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We now generalize our computation of curvature to arbitrary spaces.

1 Parallel transport around a small closed loop
We compute the change in a vector, wα, which we parallel transport around a closed loop. The loop starts
at a point P, which we take to have coordinates (0, 0), progresses along a direction uα a distance λ to a
point at (λ, 0). Next, we transport along the direction vα a distance σ to a point at (λ, σ), giving a curve C1

from (0, 0) to (λ, σ). Rather than returning in the direction −uα by λ then −vα by σ, we perform a second
transport, interchanging the order: first vα by σ, then uα by λ, giving curve C2 from (0, 0) to (λ, σ). We
then compare the expressions for wα (λ, σ) along the two curves. This gives the same result as if we had
transported around the closed loop C1 − C2, but the computation is easier this way.

Start with two directions, uα (0, 0) and vα (0, 0). Parallel transport each in the direction of the other to
get uα (0, σ) and vα (λ, 0):

vα (λ, 0) = vα (0, 0) +
dvα

dλ
(0, 0)λ

= vα (0, 0)− uβ (0, 0) vµ (0, 0) Γαµβ (0, 0)λ

and

uα (0, σ) = uα (0, 0) +
duα

dλ
(0, 0)σ

= uα (0, 0)− vβ (0, 0)uµ (0, 0) Γαµβ (0, 0)σ

Now take a third vector, wα (0, 0) and transport it to wα (λ, σ) in two different ways, first along uα and
then vα, then in the opposite order.

First,
wα (λ, 0) = wα (0, 0)− uβ (0, 0)wµ (0, 0) Γαµβ (0, 0)λ

then

wα (λ, σ) = wα (λ, 0)− vβ (λ, 0)wµ (λ, 0) Γαµβ (λ, 0)σ

=
(
wα (0, 0)− uβ (0, 0)wµ (0, 0) Γαµβ (0, 0)λ

)
−

(
vβ (0, 0)− uλ (0, 0) vτ (0, 0) Γβτλ (0, 0)λ

) (
wµ (0, 0)− uρ (0, 0)wσ (0, 0) Γµσρ (0, 0)λ

) (
Γαµβ (0, 0) + uδ∂δΓαµβ (0, 0)λ

)
σ

= wα (0, 0)
−uβ (0, 0)wµ (0, 0) Γαµβ (0, 0)λ

−vβ (0, 0)wµ (0, 0) Γαµβ (0, 0)σ

+uλ (0, 0) vτ (0, 0)wµ (0, 0) Γβτλ (0, 0) Γαµβ (0, 0)σλ

+vβ (0, 0)uρ (0, 0)wσ (0, 0) Γµσρ (0, 0) Γαµβ (0, 0)σλ
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−vβ (0, 0)wµ (0, 0)uδ∂δΓαµβ (0, 0)λσ

+uλ (0, 0) vτ (0, 0)wµ (0, 0) Γβτλ (0, 0)uδ∂δΓαµβ (0, 0)λ2σ

+vβ (0, 0)uρ (0, 0)wσ (0, 0) Γµσρ (0, 0)uδ∂δΓαµβ (0, 0)λ2σ

−uλ (0, 0) vτ (0, 0) Γβτλ (0, 0)uρ (0, 0)wσ (0, 0) Γµσρ (0, 0) Γαµβ (0, 0)λ2σ

−
(
uλ (0, 0) vτ (0, 0) Γβτλ (0, 0)uρ (0, 0)wσ (0, 0) Γµσρ (0, 0)

)
uδ∂δΓαµβ (0, 0)λ3σ

Now that all quantities are expressed at P = (0, 0), we may drop these (0, 0) arguments. Keeping only terms
to second order:

wαC1
(λ, σ) = wα − uβwµΓαµβλ− vβwµΓαµβσ

−vβwµuδ∂δΓαµβλσ + uλvτwµΓβτλΓαµβσλ

+vβuρwσΓµσρΓ
α
µβσλ

Now repeat in the opposite order (just interchange uα with vα and σ with λ),

wαC2
(λ, σ) = wα − vβwµΓαµβσ − uβwµΓαµβλ

−uβwµvδ∂δΓαµβλσ + vλuτwµΓβτλΓαµβσλ

+uβvρwσΓµσρΓ
α
µβσλ

The difference between these gives the change in wα under parallel transport around the loop

δwα = wαC1−C2

= wαC1
(λ, σ)− wαC2

(λ, σ)

= wα − uβwµΓαµβλ− vβwµΓαµβσ + uλvτwµΓβτλΓαµβσλ

+vβuρwσΓµσρΓ
α
µβσλ− vβwµuδ∂δΓαµβλσ

−wα + vβwµΓαµβσ + uβwµΓαµβλ− vλuτwµΓβτλΓαµβσλ

−uβvρwσΓµσρΓ
α
µβσλ+ uβwµvδ∂δΓαµβλσ

so

δwα = wα − wα − uβwµΓαµβλ+ uβwµΓαµβλ− vβwµΓαµβσ + vβwµΓαµβσ

+wµ
(
uβvδ∂δΓαµβ − vβuδ∂δΓαµβ

)
σλ

+wµ
(
uλvτΓβτλΓαµβ + vβuρΓσµρΓ

α
σβ − vλuτΓβτλΓαµβ − uβvρΓσµρΓασβ

)
λσ

= wµ
(
uβvνΓαµβ,ν − vνuβΓαµν,β

)
σλ

+wµ
(
uλvτ

(
Γβτλ − Γβλτ

)
Γαµβ + vνuβΓσµβΓασν − uβvνΓσµνΓασβ

)
λσ

+wµ
(
Γαµβ,ν − Γαµν,β + ΓσµβΓασν − ΓσµνΓασβ

)
vνuβλσ

The change in wα per unit area is our measure of the curvature,

δwα

λσ
= wµ

(
Γαµβ,ν − Γαµν,β + ΓσµβΓασν − ΓσµνΓασβ

)
vνuβ

= wµRαµβνu
βvν

We see that the change in wα depends linearly on wα, and also on the orientation of the infinitesimal loop
spanned by uα and vα. The rest of the expression,

Rαµβν ≡ Γαµβ,ν − Γαµν,β + ΓσµβΓασν − ΓσµνΓασβ
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is called the Riemann curvature tensor. It may be thought of as a trilinear operator which takes an oriented
unit area element,

Sβν =
1
2

(
uβvν − uνvβ

)
to give a linear operator, Tαµ = RαµβνS

βν . This linear operator gives the infinitesimal change in wα per unit
area, in the limit of zero area, when wα is transported around the area element with orientation Sβν .

Since all elements of this construction are defined geometrically from within the manifold, Rαµβν is
intrinsic to the manifold. To see that it is also a tensor, we could recompute the same construction in
different coordinates. Since the entire construction is perturbative, we would find the components of Rαµβν
changing linearly and homogeneously in the transformation matrix. However, there is an easier way to prove
that Rαµβν is a tensor. Consider two covariant derivatives of the vector wα,

DµDνw
α = Dµ

(
∂νw

α + wβΓαβν
)

= ∂µ
(
∂νw

α + wβΓαβν
)

+
(
∂νw

ρ + wβΓρβν
)

Γαρµ −
(
∂ρw

α + wβΓαρν
)

Γρνµ

Because we use covariant derivatives, this object is necessarily a tensor. Now take the derivatives in the
opposite order and subtract, giving the commutator. This is also a tensor,

[Dµ, Dν ]wα = DµDνw
α −DνDµw

α

= ∂µ∂νw
α + ∂µw

βΓαβν + wβΓαβν,µ +
(
∂νw

ρ + wβΓρβν
)

Γαρµ −
(
∂ρw

α + wβΓαρν
)

Γρνµ

−∂ν∂µwα − ∂νwβΓαβµ − wβΓαβµ,ν −
(
∂µw

ρ + wβΓρβµ
)

Γαρν +
(
∂ρw

α + wβΓαρν
)

Γρµν

= ∂µ∂νw
α − ∂ν∂µwα + ∂µw

βΓαβν + ∂νw
ρΓαρµ − ∂νwβΓαβµ − ∂µwρΓαρν

−
(
∂ρw

α + wβΓαρν
)

Γρνµ +
(
∂ρw

α + wβΓαρν
)

Γρµν
+wβΓαβν,µ + wβΓρβνΓαρµ − wβΓαβµ,ν − wβΓρβµΓαρν

= wβRαβνµ

Since the result is wβ properly contracted with Rαβνµ, and w
β is a tensor, Rαβνµ must also be a tensor.

2 Symmetries of the curvature tensor
Recall that parallel transport of wα preserves the length, wαwα of wα. This means that the transformation,(

δαµ + Tαµσλ
)
wµ = wα + wµRαµβνS

βνσλ

= wα + δwα

must be an infinitesimal Lorentz transformation, Λαβ = δαβ + εαβ . An infinitesimal Lorentz transformation
satisfies

ηαβ = ηµνΛµαΛνβ
= ηµν (δµα + εµα)

(
δνβ + ενβ

)
= ηαβ + ηανε

ν
β + ηµβε

µ
α +O

(
ε2

)
0 = εαβ + εβα

so when the indices of an infinitesimal Lorentz transformation are both in the same position, they must be
antisymmetric. Therefore, Tαβ = −Tβα and we must have

RαβµνS
µν = −RβαµνSµν
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for any surface element Sµν . Therefore, the Riemann curvature tensor is antisymmetric on the first pair of
indices,

Rαβµν = −Rβαµν
From the explicit expression for Rαβµν , the curvature tensor must also be antisymmetric on the last pair

of indices,

Rαβµν = Γαβµ,ν − Γαβν,µ + ΓασνΓσβµ − ΓασµΓσβν
= −Γαβν,µ + Γαβµ,ν − ΓασµΓσβν + ΓασνΓσβµ
= −

(
Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓσβµ

)
= −Rαβνµ

Another symmetry follows if we totally antisymmetrize the final three indices,

Rα[βµν] =
1
3

(
Rαβµν +Rαµνβ +Rανβµ

)
3Rα[βµν] = Γαβµ,ν − Γαβν,µ + ΓασνΓσβµ − ΓασµΓσβν

+Γαµ,νβ − Γαµβ,ν + ΓασβΓσµν − ΓασνΓσµβ
+Γαν,βµ − Γανµ,β + ΓασµΓσνβ − ΓασβΓσνµ

=
(
Γαβµ − Γαµβ

)
,ν

+
(
Γανβ − Γαβν

)
,µ

+
(
Γαµν − Γανµ

)
,β

+Γασν
(
Γσβµ − Γσµβ

)
+ Γασβ

(
Γσµν − Γσνµ

)
+Γασµ

(
Γσνβ − Γσβν

)
= 0

the sum vanishes identically because of the symmetry of Γαµν . This condition ultimately arises because the
connection may be written in terms of the metric. It is called the first Bianchi identity.

Finally, consider

Rαβµν −Rµναβ = Rαβµν − (−Rµαβν −Rµβνα)
= Rαβµν −Rαµβν −Rβµνα
= Rαβµν − (−Rαβνµ −Rανµβ)− (−Rβαµν −Rβναµ)
= Rαβµν +Rαβνµ +Rανµβ +Rβαµν +Rβναµ

= −Rαβµν +Rανµβ +Rβναµ

= (−Rαβµν −Rανβµ) +Rβναµ

= Rαµνβ +Rβναµ

= −Rαµβν +Rβναµ

Now interchange the names of both αβ and µν. On the left, this gives two minus signs, but on the right
only one:

Rαβµν −Rµναβ = −Rαµβν +Rβναµ

Rβανµ −Rνµβα = −Rβναµ +Rαµβν

(−1)2 (Rαβµν −Rµναβ) = +Rαµβν −Rβναµ
= − (Rαβµν −Rµναβ)

This difference therefore vanishes, and we have symmetry under interchange of the pairs,

Rαβµν = Rµναβ
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Summarizing, we have the following symmetries of the Riemann curvature tensor:

Rαβµν = −Rβαµν
Rαβµν = −Rαβνµ
Rαβµν = Rµναβ

Rα[βµν] = 0

We can count the independent components by using these symmetries. Because of the antisymmetry on αβ,
there are only 4·3

2 = 6 independent values for this pair of indices. The same counting holds for the final pair,
µν. Since we have symmetry in these pairs,

R[αβ][µν] = R[µν][αβ]

we may think of R[αβ][µν] as a 6 × 6 symmetric matrix, which will have 6·7
2 = 21 independent components.

This makes use of the first three symmetries.
To use the final symmetry, note that the three final indices must differ from one another, so there are

only possible four cases,

R0[αβµ] = 0
R1[αβµ] = 0
R2[αβµ] = 0
R3[αβµ] = 0

Now suppose one of αβµ is the same as the first index, for example,

R1123 +R1312 +R1231 = R1312 +R1231

= R1312 −R1213

= 0

Then the vanishing is automatic using the previous three symmetries and there is no additional constraint.
Therefore, to get any new condition, all four indices must differ. But then, notice that

R0123 = −R1023

= R2310

= −R3210

so that once we have the condition with 0 in the first position, the other three possibilities follow automati-
cally. There is therefore only one condition from the fourth symmetry,

R0123 +R0312 +R0231 = 0

reducing the number of degrees of freedom of the Riemann curvature tensor to 20.

3 Ricci tensor and Ricci scalar
Because of the symmetries, there is only one independent contraction of Rαβµν . We define the Ricci tensor,

Rµν ≡ Rαµαν
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Because of the symmetry between pairs, we have

Rµν ≡ Rαµαν

= gαβRαµβν

= gαβRβναµ

= Rαναµ

= Rνµ

so the Ricci tensor is symmetric.

Exercise: Prove that any other contraction of the curvature is either zero, or a multiple of the Ricci tensor.

We also define the Ricci scalar, given by taking contracting the Ricci tensor,

R = gµνRµν

It is possible to decompose the full Riemann curvature into a traceless part, called the Weyl curvature,
and combinations of the Ricci tensor and Ricci scalar, but we will not need this now.

4 The second Bianchi identity and the Einstein equation
We have already seen the first Bianchi identity,

Rα[βµν] = 0

This is an integrability condition that guarantees that the connection may be written in terms of derivatives
of the metric. There is a second integrability condition, called the second Bianchi identity, guaranteeing that
the curvature may be written in terms of a connection. The second Bianchi identity is

Rαβ[µν;σ] = 0

To prove this, first consider antisymmetrizing a double commutator:

[Dβ , [Dµ, Dν ]]wα = (DβDµDν −DβDνDµ −DµDνDβ +DνDµDβ)wα

3
[
D[β ,

[
Dµ, Dν]

]]
= [Dβ , [Dµ, Dν ]] + [Dµ, [Dν , Dβ ]] + [Dν , [Dβ , Dµ]]
= DβDµDν −DβDνDµ −DµDνDβ +DνDµDβ

+DµDνDβ −DµDβDν −DνDβDµ +DβDνDµ

+DνDβDµ −DνDµDβ −DβDµDν +DµDβDν

= DβDµDν −DβDµDν −DβDνDµ +DβDνDµ

+DµDνDβ −DµDνDβ −DµDβDν +DµDβDν

−DνDβDµ +DνDβDµ −DνDµDβ +DνDµDβ

= 0

However, we may also write this as

0 = 3
[
D[β ,

[
Dµ, Dν]

]]
wα

= [Dβ , [Dµ, Dν ]]wα + [Dµ, [Dν , Dβ ]]wα + [Dν , [Dβ , Dµ]]wα

= Dβ (DµDν −DνDµ)wα +Dβ (DνDµ −DµDν)wα

+Dµ (DνDβ −DβDν)wα +Dµ (DβDν −DνDβ)wα
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+Dν (DµDβ −DβDµ)wα +Dν (DβDµ −DµDβ)wα

= Dβ

(
wρRαρµν

)
+Dβ

(
wρRαρνµ

)
+Dµ

(
wρRαρνβ

)
+Dµ

(
wρRαρβν

)
+Dν

(
wρRαρµβ

)
+Dν

(
wρRαρβµ

)
= wρRαρ[µν;β]

+
(
Rαρµν +Rαρνµ

)
Dβw

ρ +
(
Rαρνβ +Rαρβν

)
Dµw

ρ +
(
Rαρµβ +Rαρβµ

)
Dνw

ρ

= wρRαρ[µν;β]

and since wα is arbitrary, we have the second Bianchi identity.
The second Bianchi identity is important for general relativity because of its contractions. First, expand

the identity and contract on αµ,

0 = Rαβµν;σ +Rαβνσ;µ +Rαβσµ;ν

0 = Rαβαν;σ +Rαβνσ;α +Rαβσα;ν

Using the definition of the Ricci tensor and the antisymmetry of the Riemann tensor,

0 = Rβν;σ +Rαβνσ;α −Rβσ;ν

Now contract on βσ using the metric,

0 = gβσRβν;σ + gβσRαβνσ;α − gβσRβσ;ν

=
(
gβσRβν

)
;σ

+ gβσR α
β σν;α −

(
gβσRβσ

)
;ν

= Rσν;σ +Rαν;α −R;ν

We may write this as a divergence,

0 = Rαν;α −
1
2
R;ν

0 = Dα

(
Rαν −

1
2
δανR

)
or, raising an index,

Dα

(
Rαβ − 1

2
gαβR

)
= 0

We define the Einstein tensor,

Gαβ ≡ Rαβ − 1
2
gαβR

and have now shown that it has vanishing divergence. Since both the Ricci tensor and the metric are both
symmetric, we have

Gαβ = Gβα

DβG
αβ = 0

These are precisely the properties we require of the energy-momentum tensor, Tαβ . It can be shown that
Gαβ is the only tensor linear in components of the Riemann curvature tensor to have these properties.

Reasoning that it is the presence of energy that leads to curvature, the only candidate equation consistent
with the properties of Tαβ and linear in the curvature (hence, a second order differential equation for the
metric) is

Gαβ = κTαβ

This is the Einstein equation for general relativity.
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