Riemannian Curvature

February 26, 2013

We now generalize our computation of curvature to arbitrary spaces.

1 Parallel transport around a small closed loop

We compute the change in a vector, w®, which we parallel transport around a closed loop. The loop starts
at a point P, which we take to have coordinates (0,0), progresses along a direction u® a distance A to a
point at (A, 0). Next, we transport along the direction v* a distance ¢ to a point at (A, o), giving a curve Cy
from (0,0) to (A, o). Rather than returning in the direction —u® by A then —v® by o, we perform a second
transport, interchanging the order: first v® by o, then u® by A, giving curve Cy from (0,0) to (A, o). We
then compare the expressions for w® (\, o) along the two curves. This gives the same result as if we had
transported around the closed loop C; — Cs, but the computation is easier this way.

Start with two directions, u® (0,0) and v® (0,0). Parallel transport each in the direction of the other to
get u® (0,0) and v (A, 0):

dv®
(0% )\ — « )\
v® (X, 0) v (0,0)+—dA (0,0)
= v*(0,0) — u” (0,0) v" (0,0) %4 (0,0) A
and
“(0,0) = u*(0,0)+ 2 (0,0)
U ,0) = u , U o

= u*(0,0) — " (0,0)u" (0,0)T%,;(0,0) o

Now take a third vector, w® (0,0) and transport it to w® (A, o) in two different ways, first along u® and
then v, then in the opposite order.

First,
w® (X, 0) = w® (0,0) — u” (0,0) w" (0,0)T%4 (0,0) A
then
w* (N, o) = w*(\0) =07 (\0)wt () 0) s (A, 0) 0

= (w*(0,0) — u” (0,0)w" (0,0)T%; (0,0) \)
- (vﬁ (0,0) — u* (0,0) v™ (0,0) 1%, (0,0) /\) (" (0,0) — u” (0,0)w (0,0)T%  (0,0) A) (T (0,0) +u’dsT, 5

—u” (0,0) w* (0,0)T%,5 (0,0) A
—07 (0,0) w" (0,0)T%,5 (0,0) o
+u* (0,0)v" (0,0) w” (0,0) T, (0,0)T%4 (0,0) o
+07 (0,0) u” (0,0) w” (0,0) T (0,0)T%4 (0,0) oA
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Now that all quantities are expressed at P = (0,0), we may drop these (0,0) arguments. Keeping only terms
to second order:

we, (\o) = w - uﬁw“Fol‘w/\ - vﬁw"FO}‘wa
fvﬂw”uéagfig)\a + u’\va“FﬁT)\I‘O;BU)\
+v5upw”I"‘0pFOLﬂaA

Now repeat in the opposite order (just interchange u® with v® and o with \),
we, (A o) = w* — 'UB'U}MFD;_LﬁO' — uﬁw”I‘OLﬁ)\
—u’gw“v‘s&;FO}:ﬁ/\a + vAuTw”FﬁT)\FOLﬁU)\
—|—uﬁv"w"F"UpFol‘wa)\
The difference between these gives the change in w® under parallel transport around the loop

a o
511) = wCI_CZ

= wg’l ()" U) - wg’2 ()"U)

= w*— uﬂw“l'“ibﬁ)\ — vﬂw“l"";LBo + u)‘va“l"’gml"O;ﬁa)\
—l—vﬂu”w"l"ﬁ,pFO;LﬁUA - Uﬁw”u‘sagf‘(jw)\a
—w* + vﬁwﬂfoﬁﬁa + uﬁw“F%ﬂ)\ — UAuTw“FﬁT)\Fa“BU)\
fuﬁva"l“‘f,pfojtﬁa)\ + uﬁw”v‘saﬂ‘o;ﬁ/\a

SO

ow®* = w*—w— u'@w“I‘CLg)\ + uﬁw“FCLg)\ — vﬁw“F‘iga + vﬁw“F‘iﬁa
+wh (uﬁv‘S&;I‘OLﬁ — vﬁuéa(;riﬁ) oA
+w” (uAvTFﬁT)\FCZL[; + v’@u”F”NPFOﬁ,ﬂ - v)‘uTFﬁT)\Fojtﬂ - uﬁv’T‘LpFo{‘,g) Ao
= w! (u'gv”I‘O;LB’V — v”uﬁfojwﬂ) oA
+wh (u)‘vT (FBT/\ - Fﬂ/\7> s+ v”uﬁf"“ﬁf%y - uﬁv"f"’w Of,ﬁ> Ao
+w (1%, —T%, 5 +T9,5T%, =19, 0%;) v"u’ Ao

The change in w® per unit area is our measure of the curvature,

ow® 5 5
o w” (F(ZB,U — 10 +10%, =T WFO;B) v'u’
= w“R‘iﬁuuﬂv”

We see that the change in w® depends linearly on w®, and also on the orientation of the infinitesimal loop
spanned by u® and v®. The rest of the expression,

Gy =050 =T s + 15605, =19, 1%,



is called the Riemann curvature tensor. It may be thought of as a trilinear operator which takes an oriented

unit area element,

SoV = % (uﬂv” — u”vﬁ)

to give a linear operator, T, = RCLBVS'G”. This linear operator gives the infinitesimal change in w® per unit

area, in the limit of zero area, when w® is transported around the area element with orientation S°”.

Since all elements of this construction are defined geometrically from within the manifold, R g, is
intrinsic to the manifold. To see that it is also a tensor, we could recompute the same construction in
different coordinates. Since the entire construction is perturbative, we would find the components of R4,
changing linearly and homogeneously in the transformation matrix. However, there is an easier way to prove

that R, 5, is a tensor. Consider two covariant derivatives of the vector w*,
D,D,w* = D, (d,w* +w’l%,)
= 8# (aywa + wﬁl—\a V) + (aywp T wﬁrpﬁu) FO;M - (aﬂwa + wﬁFO:?V) FPVM

Because we use covariant derivatives, this object is necessarily a tensor. Now take the derivatives in the
opposite order and subtract, giving the commutator. This is also a tensor,

(D Dy

D,D,w* - D, D, w*

= 0D + B T 0T (B + T, ) T, = (@ + 07T, T,

—0,0,w” — 9, wT%, —w’T%, , — (8ﬂw" + wﬁFpﬁu) re, + (uw* +w’re,)re,,

= 9u0,w” — 0,00 + 0,w°T%, + 9,wT%, — 0,w’T%, — 9, w'T?,
— (9w + w'@I‘O;w) .+ (Opw™ + w'@I‘O;w) e,

+w’T%, , + w7, 1% —w'T%, , — T T,
— B
= w’R%,,

m

Since the result is w” properly contracted with R%, W and w? is a tensor, R® vy Must also be a tensor.

2 Symmetries of the curvature tensor
Recall that parallel transport of w® preserves the length, w®w, of w®. This means that the transformation,

(00 +T%oN) w' = w*+w'R%,,S% o)

= w4+ ow”

must be an infinitesimal Lorentz transformation, % = 65 + &%. An infinitesimal Lorentz transformation
satisfies

Nag = NuwGA

N (5 +€%,) (5 +€%)
= Tag+ 77au€"5 + Nusele + O (52)
0 = €af T EBa

so when the indices of an infinitesimal Lorentz transformation are both in the same position, they must be
antisymmetric. Therefore, T3 = =T, and we must have

Raﬁpusuy = _Rﬁa,uws’”y



for any surface element S*”. Therefore, the Riemann curvature tensor is antisymmetric on the first pair of
indices,
Raﬁ;u/ = _R[Bauy

From the explicit expression for R% mr the curvature tensor must also be antisymmetric on the last pair
of indices,

e} @ [eY o oY o
Buw =L pop T Iy Bu — T ous By

- aﬂv,u + F"Zm,u - Fcfw (T@V +I% 73#

(e}
Bupv

= - ( 023’/;!1' - OLBIMV + F(TJ'M UBU - FO(;’Z/ aﬂp,)
= —R%,

Another symmetry follows if we totally antisymmetrize the final three indices,

1} 1 [} [} [}
) = 3 (B + Rus + Ropy)
3RCE/3W] = % —Thu + %, — 5, 1%,
% = D 1550 = T5, M
+Fclzfﬂu - FO://A,B + FO:T;LFUVﬁ - FO;BFUVM

= (0%, T, (M9 - T%,), + (T, ~T%,)
+I'%, ( Uﬁu B FUHB) + FO«;B (Fglw - ngu)
'waw( (Lﬁ - Uﬁu)

= 0

the sum vanishes identically because of the symmetry of I'Y,,. This condition ultimately arises because the
connection may be written in terms of the metric. It is called the first Bianchi identity.
Finally, consider

Ropuw — Buvap = Rapw — (—Ruapy — Rupra)

Raﬂ;w - Rauﬁl/ - Rﬁlwa

= Rapuw — (—Rapvp — Ravus) = (—Rpauw — Rpvap)
Rapuv + Rapup + Ravpp + Rpaww + Rpvan
—Rapuw + Ravup + Rpvap

(=Rapuv — Rawvpp) + Ravap

= Rawp + Rgvap

= —Raupy + Rpvap

Now interchange the names of both af and uv. On the left, this gives two minus signs, but on the right
only one:

Ropuy — Ruvap = —Rapsy + Rpvap
Rgavp — Ruppa = —Rpuvap + Raupy
(_1)2 (Raﬁuv - Ruvaﬁ) = +Rausv — Rgvap

= - (Raﬂw - Rumﬂ)

This difference therefore vanishes, and we have symmetry under interchange of the pairs,

Rapuw = Ruvap



Summarizing, we have the following symmetries of the Riemann curvature tensor:

Raguww = —Rpaw

Ropur = —Rapup

Ropuy = Ryuvap
Rapgp) = 0

We can count the independent components by using these symmetries. Because of the antisymmetry on af,
there are only % = 6 independent values for this pair of indices. The same counting holds for the final pair,
pr. Since we have symmetry in these pairs,

Riagiiw) = Riuvjjag)

we may think of Rj,g[.) as a 6 X 6 symmetric matrix, which will have %—7 = 21 independent components.

This makes use of the first three symmetries.
To use the final symmetry, note that the three final indices must differ from one another, so there are
only possible four cases,

Rofapyy = 0
Rijopy = 0
Rofapy = 0
R3japu) 0

Now suppose one of afBu is the same as the first index, for example,

Ri123 + Rigi2 + Ri231 = Riziz + Ri231
= Riziz — Rioi3
0

Then the vanishing is automatic using the previous three symmetries and there is no additional constraint.
Therefore, to get any new condition, all four indices must differ. But then, notice that

Roizz = —Ripos
= Razio
= —R3p

so that once we have the condition with 0 in the first position, the other three possibilities follow automati-
cally. There is therefore only one condition from the fourth symmetry,

Ro123 + Rozi2 + Ro231 = 0

reducing the number of degrees of freedom of the Riemann curvature tensor to 20.

3 Ricci tensor and Ricci scalar

Because of the symmetries, there is only one independent contraction of R% . We define the Ricci tensor,
RIJ«V = R%au



Because of the symmetry between pairs, we have

_ oY
R#V = R pav

= gaﬁRa,uﬁu
= gaﬁRﬁua/L
Rofjau

= RV;U'

so the Ricci tensor is symmetric.

Exercise: Prove that any other contraction of the curvature is either zero, or a multiple of the Ricci tensor.

We also define the Ricci scalar, given by taking contracting the Ricci tensor,
R=g¢""R,,

It is possible to decompose the full Riemann curvature into a traceless part, called the Weyl curvature,
and combinations of the Ricci tensor and Ricci scalar, but we will not need this now.

4 The second Bianchi identity and the Einstein equation

We have already seen the first Bianchi identity,

Rajgu) =0

This is an integrability condition that guarantees that the connection may be written in terms of derivatives
of the metric. There is a second integrability condition, called the second Bianchi identity, guaranteeing that
the curvature may be written in terms of a connection. The second Bianchi identity is

Rlui0) = 0

nvio
To prove this, first consider antisymmetrizing a double commutator:

[Dgs,[D,,D,))Jw* = (DgD,D, — DgD,D, — D,D,Dg+ D,D,Dg)w"
3[Ds. [0, Dy]] = (D, (D DJ) + (D, (D D)l + Dy (D5 D,
= DgD,D, —DgD,D,—D,D,Dg+ D,D,Dg
+D,D,Dg — D,DgD, — D,DgD, + DgD, D,
+D,DgD, — D,D,,Dg — DgD, D, + D, DgD,
= DgD,D, —DgD,D, —DsgD,D, + DgD, D,
+D,D,Dg —D,D,Dg — D, DgD, + D, DgD,
-D,DgD,, + D,DgD,, — D,D,Dg+ D,D,Dg
=0
However, we may also write this as
0 = 3[Dg, [Dy, Dy]] w*
= [Dp, [D, DlJw® + Dy, [Dy, Dgl]w® + [Dy, [Dg, Dp]] w®
Dg (D,D, — D,D,)w*+ Dg (D,D, — D, D,)w"
+D, (D,Dg — DgD,)w* + D, (DsD, — D, Dg) w*



+D, (DuDs — DDy) w® + Dy (DgDy — Dy D) w®
= Dy (wR%,,) + Ds (w'R%,,) + Dy, (W' R, 5)

ppv PV pv3
+Dy (W RSs,) + Dy (W R, 5) + Dy (W' Rp,)
= WRYu
+ (R, + RY,,) Daw’ + (R, 5+ RYp,) Duw + (RY,5 + RYs,) Dyw”
= WRY .

and since w® is arbitrary, we have the second Bianchi identity.
The second Bianchi identity is important for general relativity because of its contractions. First, expand
the identity and contract on au,

0 = Riuo + Bhuon + Bhopn
0 = 02300/;0 + R Voo + R, ooy

Using the definition of the Ricci tensor and the antisymmetry of the Riemann tensor,
0= Rguio + Rppo0 — Rpow
Now contract on So using the metric,
0 = gﬁaRﬁu;n + gﬁURa voia gﬁGRBU;V
(97 Rav),, + 9" Rf g0 = (97 Ro),,

)

RUI/;O’ + Rollj;a - R'V

)

We may write this as a divergence,
1
0 = R%..,—-R.

Vi 2 ’

1
D, (R — =652
Q(Ry 25VR)

o
I

or, raising an index,
1
D, (Raﬁ — QgQﬁR) =0

We define the Einstein tensor,

1
Gaﬁ = Raﬁ o 5gocB‘R

and have now shown that it has vanishing divergence. Since both the Ricci tensor and the metric are both
symmetric, we have

Gaﬁ — Gﬁa
DG = 0

These are precisely the properties we require of the energy-momentum tensor, 7%?. It can be shown that
G°P is the only tensor linear in components of the Riemann curvature tensor to have these properties.
Reasoning that it is the presence of energy that leads to curvature, the only candidate equation consistent
with the properties of 7% and linear in the curvature (hence, a second order differential equation for the
metric) is
G*P = g7

This is the Einstein equation for general relativity.



