
Relativistic Stars

Reminder: Geometricized Units

• Just as a reminder, relativists work in geometricized units, where G = c = 1. As astro-
physicists, this seems weird and we often endeavour to restore “proper units” to expressions
we use and derived.

• There is some usefulness in using geometricized units because it allows you to quickly make
assessments about whether or not you need to worry about relativistic considerations in any
given astrophysical computation you may be engaged in.

• As a consideration of this, let’s recall the Schwarzschild radius, rs. While this physical
quantity is associated with Karl Schwarzschild, who discovered the first exact solution of the
Einstein Field Equations, it was actually first derived in Newtonian gravity!

• In 1783, the Rev. John Michell was thinking about the concept of escape speed, and asked
how compact an object had to be in order for the escape speed to be the speed of light. This
radius is sometimes referred to as the “gravitational radius”, and the answer (J. Michell,
Phil. Trans. Roy. Soc. Lon., 74, 35 [1783]) is

rs =
2GM

c2
→ rs = 2M

• As you can see on the RHS of the “→” we have imposed geometricized units, and see the
physical dependence directly — the Schwarzschild radius changes with the mass.

• The whole point in working with geometricized units is this: we have abandoned the idea
that gravity is a field, instead replacing it with the idea that the “force of gravity” is a
manifestation of the fact that spacetime is curved, and that observed motions (“under the
influence of a gravitational field”) are a consequence of the underlying geometry of spacetime.

• As such, geometricized units provide us with a convenient way to talk about whether or
not physical quantities affect the geometry of spacetime. Relativistic astrophysicists will ask
themselves, “is this quantity geometrically important?”

• The easy way to answer this is to directly compare physical quantities; in SI units, this is not
always easy — how does the mass compare to the angular momentum? But in geometricized
units, where everything has been reduced to units of meters, it becomes much easier!

• For reference, here is a table of the most common multiplicative conversion factors, which
we will return to and use often in relativistic astrophysics.

1 Relativistic Astrophysics – Lecture



Quantity Value Notes

G/c2 7.426× 10−28 m/kg Convert mass to geometric units

G/c3 2.477× 10−36 s/kg Convert angular momentum to geometric units

G/c4 8.263× 10−45 s/(kg m) Convert energy to geometric units

G/c5 2.756× 10−53 s3/(kg m2) Convert power (luminosity) to geometric units

• As astrophysicists are often used to talking about physical quantities in reference to known,
easily measured values (like the values for the Sun), it is also convenient to carry around in
your pocket a few useful numbers. There is no definitive set, but some that I use regularly
are:

Symbol Value Quantity

M⊙ 1477 m Solar mass

L⊙ 1.058× 10−26 Solar Luminosity (dimensionless)

M⊕ 4.435× 10−3 m Earth mass

When does relativity matter for stars?

• At this point you have derived (or at least seen) the Schwarzschild solution to the Einstein
Field Equations. Schwarzschild is the unique static, spherically symmetric, vacuum solution
to the EFEs.

• In fact, the Schwarzschild solution is the only spherically symmetric solution to the vacuum
Einstein Equations. This result is known as Birkhoff’s Theorem :

Any spherically symmetric, vacuum solution of the EFEs must be stationary and asymp-
totically flat ; this implies that the solution must be given by the Schwarzschild metric.

• An important consequence of this is that all spherical gravitational fields are indistin-
guishable from one another at large distances; we could not tell (for instance) if the Sun is
a star, or a black hole of the same mass.

• In its classic form, the Schwarzschild metric may be written in spherical coordinates
{t, r, θ, φ} as

ds2 = −
(

1− 2M

r

)

dt2 +
dr2

1− 2M/r
+ r2dθ2 + r2 sin2 θ dφ2
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• The metric is entirely characterized in terms of a single parameter M , usually called
the mass. Note that as r → ∞, this becomes the Minkowski metric — the spacetime is
asymptotically flat.

• If one goes through this same exercise solving the joint vacuum Einstein-Maxwell equations
(the “electrovac” solution) you get a similar metric known as Reissner-Nordstrom:

ds2 = −
(

1− 2M

r
+

Q2

r2

)

dt2 +
dr2

1− 2M/r +Q2/r2
+ r2dθ2 + r2 sin2 θ dφ2

The Reissner-Nordstrom solution is exceedingly important in the study of black hole solu-
tions, but is generally considered to not be astrophysically relevant since charged objects
tend to attract opposite charges and discharge on very short timescales in space.

• Note that in Schwarzschild there is explicit time independence in the metric; there is no
dependence on t, so there is a timelike Killing vector, ξα = {1, 0, 0, 0}. There is also explicit
spherical symmetry; the last two terms may be written as a two-sphere:

r2dθ2 + r2 sin2 θ dφ2 = r2dΩ2

Like t, there is no explicit dependence on the variable φ, so there is an associated Killing
vector ηα = {0, 0, 0, 1}. There are additionally two other spacelike Killing vectors, though
they are messy to write in these coordinates.

• How do we know whether or not a star can (or should) be treated relativistically?

• Since the mass M is the only parameter, let’s consider the limit where M is small. In this
case, the line element can be expanded to yield (note we are really talking about M/r being
small):

ds2 = −
(

1− 2M

r

)

dt2 +

(

1 +
2M

r

)

dr2 + r2dθ2 + r2 sin2 θ dφ2

When studying linearization this is the exact form of the line element in the weak field limit
where the Newtonian gravitational potential is given by

Φ(r) = −M

r
→ Φ(r) = −GM

r

• A relativistic astrophysicist will ask “when is a physical quantity geometrically important?”
As with all such questions in physics, the question is up to you as the observer; you must
decide how much error you are willing to tolerate in your observations.

• In the above example, one can start by considering the mass, M . Does it matter? Or, in
other words, can I treat a system as a Newtonian system, or do I have to use general rela-
tivity? Consider a plot comparing the grr component of the Schwarzschild metric compared
to the linearized metric.

• Now let’s consider a couple of different astrophysical systems, their parameters outlined in
the table below:
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System Mass Radius 1− grr−linear/grr−Schw

Sun 1M⊙ 6.955× 108 m = 4.709× 105M 1.804× 10−11

White Dwarf 1M⊙ 6.371× 106 m = 4.314× 103M 2.149× 10−7

Sun 1.4M⊙ 104 m = 7.143M 0.0783969

Quark Star 1M⊙ 5000 m = 3.38M 0.350

• The last column in our table is the deviation between the linearized metric and the
Schwarzschild metric (multiply this by 100 to get the percent difference); as general relativity
becomes more important, this quantity grows because the linearized metric is becoming a
poor approximation to the geometry of spacetime.

• ASIDE: You may notice in the graph that the value of grr for Schwarzschild is diverging
as r → 2M . This confused people for some time before it was realized that r is not the
most ideal coordinate for all problems. This is a manifestation of a coordinate singularity —
the coordinate itself is bad at r = 2M , while physical quantities are perfectly well behaved.
Most of you are probably familiar with other coordinate singularities; the classic example is
on the top of a 2-sphere (globe). What is the value of φ at the North Pole of the Earth? it
is undefined because φ is a bad coordinate at that point, though there is nothing physically
wrong at that point on the surface of the Earth, as can be proven by simply performing
a rotation of the coordinate grid. Caveat physitor! You must always be on guard against
interpreting weird coordinate effects as true physical conditions. Quantities that depend on
coordinate values (such as tensor components) are only valid for the observer who is attached
to those coordinates! To safeguard, consider invariant quantities whenever possible.
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Particle Orbits in Schwarzschild

• As explorers, the way to understand a compact object and its effect on the space around it
is to fly around and see what the geometry of the spacetime forces you to do! As astronomers,
we do this all the time, watching astrophysical particles (gas, dust, comets, spaceships) orbit
around compact objects.

• In the case of Schwarzschild, the highly symmetric geometry makes our life easy, because of
the existence of the Killing vectors, two of which we mentioned are the timelike Killing vector
ξα associated with the time independence, and the spacelike Killing vector ηα associated with
the rotational φ symmetry.

• Noether’s theorem tells us that for every symmetry there is a conserved quantity, and
Killing vectors are a powerful way to find those conserved quantities. In particular, along
geodesics, there is a conserved quantity along the geodesic given by

const = ζαuα

where ζα is any Killing vector, and uα is the 4-velocity of an observer falling along the
geodesic.

•We find it useful to define two conserved quantities associated with the two afore-mentioned
Killing vectors:

ǫ = −ξαuα =

(

1− 2M

r

)
dt

dτ

and

ℓ = ηαuα = r2 sin2 θ
dφ

dτ
→ ℓ = r2

dφ

dτ

where we have exploited the spherical symmetry of Schwarzschild by adopting the value
θ = π/2

• What are these conserved quantities? ǫ is the energy per unit rest mass, and ℓ is the
angular momentum per unit rest mass (which we can see from dimensional analysis, at low
speeds and large distances).

• This is exactly the kind of useful thing we need to consider particle orbits — the con-
served energy and angular momentum are one of the fundamental descriptors for orbits from
classical mechanics.

• For our geodesic observer, there is a normalization constraint on the 4-velocity, uαuα = −1

• If we are confining our attention to the plane θ = π/2, then the components of our
4-velocity are

uα =
(
ut, ur, uθ, uφ

)
=

(
dt

dτ
,
dr

dτ
, 0,

dφ

dτ

)

• Using these components, we can write out the 4-velocity normalization in Schwarzschild
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as

−1 = uαuα = uαuβgαβ = −
(

1− 2M

r

)

(ut)2 +

(

1− 2M

r

)−1

(ur)2 + r2(uφ)2

• Using our identities for e and ℓ, together with a bit of algebraic massage yields

ǫ2 − 1

2
=

1

2

(
dr

dτ

)2

+
1

2

[(

1− 2M

r

)(

1 +
ℓ2

r2

)

− 1

]

which it is conventional to write as

E =
1

2

(
dr

dτ

)2

+ Veff(r)

• The quantity Veff(r) is the effective radial potential ; it is a very useful quantity to consider
here because it is completely analogous to the effective potential from orbital theory in
classical mechanics. If we fully expand Veff(r) we get

Veff (r) =
1

2

[(

1− 2M

r

)(

1 +
ℓ2

r2

)

− 1

]

= −M

r
+

ℓ2

2r2
︸ ︷︷ ︸

Newtonian

− Mℓ2

r3
︸︷︷︸

correction

• The looks just like the classic effective potential from classical mechanics with a central
angular momentum barrier, with an extra correction from general relativity. What does that
correction do? Look at a graph (for ℓ/M = 4.5, below)!

• So what do we notice right away?
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⊲ There is a minimum in the effective potential, just as in the Newtonian case. For a
particle bound in this potential, there is a stable circular orbit at the minimum of the
potential.

⊲ There is a maximum in the effective potential, unlike in the Newtonian case. There is
an unstable circular orbit at the maximum in the potential

⊲ The shape of this potential is controlled by the size of the angular momentum, ℓ.

• We can find the min/max of the potential by constructing a radial derivative:

dVeff

dr
= 0 → rmin

max
=

ℓ2

2M



1±

√

1− 12

(
M

ℓ

)2




• The absolute minimum value for this occurs when ℓ =
√
12M , then

rmin = rISCO = 6M

This is known as the ISCO — the innermost stable circular orbit. The effective potential in
this case looks like:

• There are no stable circular orbits at radii smaller than risco. This has important as-
trophysical consequences when considering phenomena such as accretion — material slowly
works its way down the gravitational potential, giving up energy and angular momentum
until it accretes onto the central, compact object. If there is a minimum radius at which
material (gas, in the accretion case) can stably orbit a black hole, it will plunge at all smaller
radii. This bounds the amount of gravitational binding energy that can be extracted by a
particle.
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Motion in the Effective Potential

• The radial motion can be interpreted completely from the effective potential equation.

E =
1

2

(
dr

dτ

)2

+ Veff(r) → dr

dτ
= ±

√
2 (E − Veff)

1/2

• The angular evolution in time similarly can be found:

ℓ = r2
dφ

dτ
→ dφ

dτ
=

ℓ

r2

• From the energy viewpoint, and particle with energy constant E divides its energy between
its potential energy and its kinetic energy. If you plot the particle’s energy on the plot of
Veff(r), then the gap between the line representing the energy and the line representing the
effective potential is a measure of the kinetic energy of the particle.
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• Where the energy line crosses the Veff line, all of the kinetic energy has been dumped
into potential energy, and the particle comes to rest. This is called a turning point . The
turning points can be found by solving the conditional equation

0 = Veff(r)− E

Caveat Physitor! This is a cubic equation in r, so there is, principle, closed form solutions
for the turning points. They are however quite long and ugly to write out; it usually more
expedient and simple to find the turning points numerically.

• There will be three or fewer turning points; the ones of interest are always real and r > 0.
They are:
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⊲ The outermost turning point is called the apoapsis or apocenter, ra. Outbound particles
that reach the apocenter turn around, and move back toward the center of the potential.

⊲ The turning point on the outside edge of the angular momentum barrier is called the
pericenter or periapsis, rp.

⊲ The turning point on the inside edge of the angular momentum barrier is labeled r1
or rin. It is not a turning point of practical concern unless the body generating the
potential is exceedingly compact (usually a black hole), as the particle would be inside
to object otherwise! As a turning point of physical interest, it corresponds to a body
deep in the gravitational well, rising away from the center to the turning point, then
turning around and plunging back to center. There is no well established physical
phenomenon with this behaviour.

• If we’d like to know the shape of the orbit, we need to know how φ varies with radial
position r. We can work that out from dr/dτ and dφ/dτ :

dφ

dr
=

dφ/dτ

dr/dτ
= ± ℓ√

2r2
(E − Veff)

−1/2

• Integrating this, φ is an ever increasing function that represents the total angle that has
been swept out in the orbit.

• For bound orbits, numerical integration will make orbits like the one shown below

• Why is the orbit precessing? Because the particle is moving through the potential between
rp and ra, it must be on an eccentric orbit. That means part of the orbit is spent deep down
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in the gravitational well, where space and time are stretched by the central mass M , and
part of the time out near the rim of the well where space and time are stretched less. This
stretching of the spacetime means that the particle accumulates φ at a varying rate, and
accumulates φ = 2π well before it returns to its starting radius!

• This is the famous perihelion precession effect that Einstein suggested as a test of general
relativity and was validated against the orbit of Mercury.

• We will forego the derivation of the perihelion precession rate and simply state it by fiat
(you can find a derivation in Hartle’s excellent book Gravity on pages 201-204, or in Chapter
11 of Schutz). The perihelion shift, in radians per orbit is:

δφ =
6πM

a(1− e2)

where a is the semi-major axis, and e is the eccentricity of the orbit. As this value is often
small, it is often expressed in units of “angle/century.” If the system has an orbital period
P and it is observed for some time Tobs, then the observed periastron shift will be

δφobs =
6πM

a(1− e2)

Tobs

P

• Now there is a curious exercise to be played here with the formula for δφ — let’s compute
the relativistic size of the perihelion shift for various astrophysical systems

System Central Mass a e Porb δφ

Mercury-Sun 1M⊙ 5.70× 1010 m 0.2056 87.969 d 0.4299′′/yr

PSR J0737-3039 1.35 + 1.24M⊙ 8.66× 108 m 0.09 2.4 h 17.6◦/yr

Earth-Moon 1M⊕ 3.84× 108 m 0.0549 27.32 d 0.00027′′/yr

Jupiter-Io 1.899× 1027 kg 4.22× 108 m 0.0041 1.769 d 2.68′′/yr

Jupiter-Europa 1.899× 1027 kg 6.71× 108 m 0.094 3.551 d 0.84′′/yr

Jupiter-Amalthea 1.899× 1027 kg 1.81× 108 m 0.0032 43, 043 s 22.15′′/yr

Stellar Interiors

• In the vacuum outside a spherically symmetric star, the spacetime geometry is that of
Schwarzschild. Imagine drawing a Gaussian sphere around the star. In this case, the
Schwarzschild mass M is simply the mass of the star, enclosed inside the sphere.

• If we want to generalize to the interior of the star, one can argue that the correct modifi-
cation to the metric components is to let M → m(r), where m(r) is the mass enclosed inside
the sphere or radius r.
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• For reasons of convenience1, it is useful to start with the metric in the form

ds2 = −e2Φdt2 + e2Λdr2 + r2dΩ2

• The game will be to write and solve the Einstein Field Equations, to understand the
dynamics of the mass the comprises the star under the influence of its own gravity. To do this,
we need several pieces: the Einstein Tensor, Gαβ, the stress-energy tensor Tαβ . Additionally,

we will insure that stress-energy is conserved, T αβ
;β = 0, and specify an equation of state p(ρ),

that relates the pressure to the stellar density.

• In the form that we have written the metric above, the functions Φ(r) and Λ(r) are simply
two unknown functions. Given the high degree of symmetry in the spacetime, the Einstein
Tensor only has 4 non-vanishing components. Using the shorthand ′ to denote derivatives
with respect to r, the surviving components of the Einstein Tensor are

Gtt =
1

r2
e2Φ

d

dr

[
r
(
1− e−2Λ

)]

Grr = − 1

r2
e2Λ
(
1− e−2Λ

)
+

2

r
Φ′

Gθθ = r2e−2Λ

[

Φ′′ + (Φ′)2 +
Φ′

r
− Φ′Λ′ − Λ′

r

]

Gφφ = sin2 θGθθ

• The simplest form of matter to consider is called a perfect fluid . By definition, perfect
fluids have the following properties:

⊲ There is no heat conduction. This restriction amounts to the physical condition where
energy flow is dictated by the flow of the fluid elements themselves. In the context of
a stress-energy tensor, this means that all the time-space elements, T 0i = T i0 = 0.

⊲ There is no viscosity. Viscosity is a manifestation of forces parallel to particle interfaces.
This means that only forces perpendicular to particle interfaces are relevant, or that
all T ij = 0 for i 6= j.

• If a fluid element has 4-velocity uα then the perfect fluid stress energy tensor is given by

T αβ = (ρ+ p)uαuβ + pgαβ

• Since the solutions of interest to us here are static, it must be that the 4-velocity of a fluid
element has form

uα = {ut, 0, 0, 0}
1In particular, with this definition of gtt, the function Φ will be identified with the Newtonian gravitational

potential.
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• As you may be gathering from our repeated use of it, one of the most valuable tools in
your arsenal is the normalization of the 4-velocity! It can be used to find values for unknown
components of uα. If we impose normalization on this 4-velocity we find

−1 = uαuβgαβ = (ut)2gtt

or
ut = e−Φ ut = −eΦ

• Using this, I can write out the components of the stress-energy tensor for a perfect fluid:

Ttt = (p+ ρ)utut + pgtt = ρe2Φ

Trr = (p+ ρ)urur + pgrr = pe2Λ

Tθθ = (p+ ρ)uθuθ + pgθθ = pr2

Tφφ = (p+ ρ)uφuφ + pgφφ = pr2 sin2 θ = sin2 θTθθ

• We have all the pieces we need to write out the EFEs. It is convenient (for physical
interpretation) to adopt the unknown function m(r) in lieu of the unknown function Λ(r):

m(r) =
1

2
r
(
1− e−2Λ

)
→ e2Λ =

(

1− 2m(r)

r

)−1

• The EFEs are Gαβ = 8πTαβ . Using the identities above we get for Gtt

dm(r)

dr
= 4πr2ρ

and for Grr

dΦ

dr
=

m(r) + 4πr3p

r[r − 2m(r)]

• We have 4 unknowns: Φ(r), m(r), p(r), and ρ(r). That means we need at least 4 equations
to specify all the unknowns. We could use the Gθθ EFE, but have you seen it? I wouldn’t
want to mess with it unless I had to. So it behooves me to look for something simpler to
work with.

• We always have the conservation of stress energy! So:

T αβ
;β = 0

Because of the symmetry of the spacetime (static and spherically symmetric), the only non-
zero derivative must be β = r, so

T rr
;r = 0 → (ρ+ p)

dΦ

dr
= −dp

dr
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This is saying that the gravitational gradient (LHS) requires a pressure gradient (RHS) to
balance out the influence of gravity and maintain the symmetries of the spacetime.

• For the last of our needed equations, we impose an Equation of State, a relationship between
p and ρ:

p = p(ρ)

• Two of our four equations depend on dΦ/dr; if we eliminate dΦ/dr between them we
obtain the Tolman-Oppenheimer-Volkoff Equation (TOV):

dp

dr
= −(p+ ρ)(m+ 4πr3p)

r(r − 2m)

• What is the TOV Equation? I like to approach this question by taking the Newtonian
limit: m ≪ r and p ≪ ρ, then it becomes

dp

dρ
= −ρm

r2

which is just the usual equation of hydrostatic equilibrium from classical fluid dynamics!

Equation of State

• The equation of state (EOS) is the last fundamental expression that must be provided. It
is an expression that describes how the pressure varies with energy density, p = p(ρ). We
assume such a relationship always exists, but that it can be different for different fluids that
might comprise our relativistic star, so there is some breadth of choice here

• The simplest choice is for an incompressible star , where the density is constant through-
out: ρ = const. While we do this here for a relativistic star using the relativistic structure
equations, most of you will be familiar with this choice as it is the usual choice made in
introductory physics when studying fluid dynamics with ordinary fluids like water.

• Another popular choice for astrophysicists is a polytropic equation of state.

• A polytrope is a sphere of gas with the pressure P related to the density ρ by2

P = κργ → γ ≡ n+ 1

n
→ P = κρ(n+1)/n

where κ is a constant throughout the star (but could be different for different stars), and
n is called the polytropic index. Polytropes are very useful in all kinds of stellar modeling,
depending on the value of the index γ.

• What is this κ constant? Remember that κ is constant throughout the star, so imagine
looking at the equation of state at the core where P = Pc and ρ = ρc. Now look at P and ρ

2Remember that P = P (r) and ρ = ρ(r); I have suppressed the (r) here for clarity.
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at any other radius r in the star. I can write the ratio of the equation of states as (note the
κ cancel out)

P (r)

Pc
=

(
ρ(r)

ρc

)(n+1)/n

→ P (r) =

(

Pc

ρ
(n+1)/n
c

)

ρ(r)(n+1)/n

• Comparing this to the polytrope equation, we note that physically κ characterizes the
central pressure and central density in our model. Various “good” choices of polytropic
index κ exist for different stars:

⊲ κ = 3, “ordinary” main sequence stars, like the Sun (usually well described by ordinary
fluid dynamics, without the need for relativistic treatments), as well as the degenerate
cores of relativistic stars like white dwarfs

⊲ κ = 1.5, Convective stars like red giants, or Jovian type planets
⊲ 0.5 . κ . 1, neutron stars. There is no definitive value that is good for neutron stars
because there is not a known equation of state that always applies to these objects.

• Polytropes can also be used to describe other “gaseous” systems, like globular star clusters.

Integrating the Structure Equations

• Any time you integrate a system of differential equations, you must make physical consid-
erations that give you an initial starting point for the endeavour (initial data or boundary
conditions).

•We have two first order differential equations, for dp/dr and for dm/dr, so we chose physical
conditions for these variables. In particular,

m(r = 0) = 0 p(r = 0) = pc

The mass goes to zero at r = 0, and the pressure goes to some finite central value pc (or
alternatively, since we will specify an equation of state, there is a central density ρc).

• We have additional boundary conditions at the surface of the star. Here, p(R) = 0 (when
I’m outside the star, the pressure goes to zero!).

• If we also insist that the metric components are continuous across the surface of the star,
then looking at grr means inside the star we have

ginsiderr =

(

1− 2m(r)

r

)−1

and outside the star we have

goutsiderr =

(

1− 2M

r

)−1
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Since these two metric components must be equal at r = R we deduce

M = m(R)

• At this point you also have the machinery to address the question about the relationship
between the stellar radius R and the Schwarzschild radius, rs = 2m(R) = 2M . Can a fluid
star, described by the Schwarzschild spacetime, have R = 2M?

• To address this, consider a star which has a radius near the Schwarzschild radius, so that
ǫ = r − 2m(r). Here ǫ ≪ 1 and decreases with r.

• With this identity, the TOV equation goes like 1/ǫ. That means the pressure gradient is
negative and is huge because ǫ is small. That means in this regime

⊲ Any finite value of the pressure is rapidly driven to zero.
⊲ The pressure is finite, so p → 0 faster than ǫ → 0
⊲ By definition, p = 0 at r = R, the surface of the star. This occurs before R = 2m(r).
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