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1 Manifolds
Loosely speaking, a manifold is a (topological) space that looks like a small piece of Rn in any sufficiently
small region. For example, the 2-dimensional surface of a ball in 3-dimensions it the space S2. If we move
very close to the surface, it looks like a piece of a Euclidean plane. Indeed, the distance between two nearby
points on the surface of a sphere of radius R is

ds2 = R2
(
dθ2 + sin2 θdϕ2

)
Pick a point, xi = (θ0, ϕ0), and look in a nearby region of the surface. Expanding about that point, in a
region (θ0 + ε, ϕ0 + σ),

sin (θ0 + ε) = sin θ0 + cos θ0ε+ . . .

dθ = dε

dϕ = dσ

the distance becomes

ds2 = R2
(
dε2 + (sin θ0 + cos θ0ε+ . . .)2 dσ2

)
≈ R2

(
dε2 + sin2 θ0dσ

2
)

Now define new coordinates

x = Rε

y = R sin θ0dσ

and as long as we can ignore the terms of order ε (dσ)2, we have

ds2 ≈ dx2 + dy2

The sphere looks like a plane when we get close enough.
In general, we describe this sort of procedure in terms of mappings. In order for a space to be an n-

dimensional, C∞ manifold, Mn, we require that in a neighborhood of each point, N (P), there must be a
1− 1, onto mapping, φ, to an open subset, O (x0), in Rn, where we take φ (P) = x0

φ : N (P)↔ O (x0)

For any point in the open set Q ∈ N (P), there is a unique x ∈ O (x0) with

φ (Q) = x

In Rn, x is an n-tuple of numbers and these are the coordinates of the point Q. The mapping φ is called a
chart.
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We cannot usually find a single such a mapping φ that assigns coordinates to every pointMn, so we need
to specify how the coordinates in nearby regions are related. Let P1,P2 be points inMn with neighborhoods
N1 (P1) and N2 (P2) and charts φ1 and φ2. Then for all points in the intersection

N12 = N1 (P1) ∩N2 (P2)

we have two different sets of coordinates, O1 = φ1 (N12) and O2 = φ2 (N12). We want there to exist a
sensible transformation between these.

Consider the case of polar coordinates and Cartesian coordinates for the plane. These are related by

x = r cosϕ
y = r sinϕ

r =
√
x2 + y2

ϕ = tan−1
(y
x

)
Except at the origin, these relations are differentiable functions. In fact, they are infinitely differentiable
(smooth). This is the condition we will require, but we need to figure out how to require it. The relationship
must hold between the coordinates φ1 (N12) and φ2 (N12), and we can specify the relationship by using the
inverse mapping, φ−1

1 . We apply two maps in succession:

φ−1
1 : O1 → N12

φ2 : N12 → O2

The combination of these, φ2 ◦ φ−1
1 is a map between two open sets in Rn,

φ2 ◦ φ−1
1 : O1 → O2

We require the mapping φ2 ◦ φ−1
1 from O1 ⊂ Rn to O2 ⊂ Rn to be infinitely differentiable. Mn is then a

C∞ manifold.

2 Vectors and forms
We can now define two vector spaces associated with any manifold. Both spaces depend on two simple ideas:
functions and curves.

A real-valued function on a manifold is an assignment of a real number to each point of the manifold,

f :M→ R

By using the charts of the manifold, we can differentiate the function. For any point P ofM, there exists a
chart on a neighborhood, N (P), of P,

φ : N (P)↔ O (x0)

so combining with the function for each point in N (P) we have a mapping from a region in Rn to the reals,

f ◦ φ−1 : O (x0)→ R

We may write the result of this as map as the number f (x) ∈ R, where x is a point in Rn. Then f is a
real-valued function on Rn and we may differentiate it in the usual way,

∂f

∂xα

While functions map fromM to R, a curve is a mapping from R intoM:

C : R→M

Combined with a chart
φ−1 ◦ C : R→ O (x0)

we have a parameterized curve in Rn, x (λ), where as λ ∈ R varies, the point x (λ) traces out a path in Rn.
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2.1 Vectors
We define:

Def: A vector at a point P is a directional derivative at P Consider the values of a function f (P)
restricted to a curve C (λ), f (C (λ)). The derivative

df

dλ

is intrinsic to the space. The function at any point of the curve C is a number, and our usual definition of
derivative works:

df

dλ
= lim
ε→0

f (C (λ+ ε))− f (C (λ))
ε

Here, λ and ε are real numbers, C (λ) and C (λ+ ε) are points of the manifold, and f (C (λ)) is another
number, the value of the function f at the point C (λ).

If we use a chart, we may write

f (P) = f ◦ φ−1 ◦ φ (P)
=

(
f ◦ φ−1

)
(φ (P))

= F (xα)

Here, f ◦φ−1 maps a point with coordinates xα in Rn to a point P of the manifold, then f evaluates on that
point. Then, to evaluate the derivative along C, where

φ (C (λ)) = xα (λ)

we have

df

dλ
= lim

ε→0

f (C (λ+ ε))− f (C (λ))
ε

= lim
ε→0

f ◦ φ−1 ◦ φ (C (λ+ ε))− f ◦ φ−1 ◦ φ (C (λ))
ε

= lim
ε→0

f (xα (λ+ ε))− f (xα (λ))
ε

=
df (xα (λ))

dλ

=
∂f (xα)
∂xα

dxα (λ)
dλ

Therefore, in coordinates, i.e., a basis, we may write

d

dλ
f (λ) =

dxα

dλ

∂

∂xα
f (xα)

We now define a vector to be the directional derivative operator

d

dλ
=

dxα

dλ

∂

∂xα

We see that once we make a choice of coordinates xα, all directional derivatives may be written as linear
combinations of the basis vectors

~eα =
∂

∂xα
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The coefficients of this linear combination are the tangents to the mapped curve, xα (λ) = φ ◦ C (λ),

vα =
dxα

dλ

We now show that these directional derivatives form a vector space. It is not hard to see that scalar
multiples are also curves, since a change of parameter from λ to aλ changes vα to avα so that avα is also a
vector. The only tricky part of the demonstration is to show that we can add directional derivatives to get
a third directional derivative. We content ourselves with demonstrating this.

Suppose we have two curves, C1 (λ) and C2 (λ). Then

φ ◦ C1 = xα1 (λ)
φ ◦ C2 = xα2 (λ)

where xα1 (λ) , xα2 (λ) are two curves in Rn. Since Rn is a vector space, we may add the vectors xα1 and xα2 at
each value of λ to get a new curve

xα3 (λ) = (xα1 + xα2 ) (λ)

Then

C3 (λ) = φ−1 (xα3 (λ))
= φ−1 (φ ◦ C1 + φ ◦ C2)

is a curve inM. Since φ ◦ C3 is just xα3 (λ), the directional derivative along C3 is

d

dλ (3)
=

dxα3 (λ)
dλ

∂

∂xα

=
d (xα1 + xα2 ) (λ)

dλ

∂

∂xα

=
dxα1
dλ

∂

∂xα
+
dxα2
dλ

∂

∂xα

=
d

dλ (1)
+

d

dλ (2)

The sum of two directional derivatives is therefore a third directional derivative. This, together with the
usual properties of addition and scalar multiplication, show that directional derivatives form a vector space.

2.2 Forms
There is a second vector space arising from curves and functions on a manifold.

Def: A form is a linear map on curves The basic idea here is that an integral is a linear mapping. If
we integrate the differential of a function along a curve, we get a number,

f (xα) =

xαˆ

C

df

The differentials, df , combine linearly,

a f (xα) + b g (xα) =

xαˆ

C

(a df + b dg)
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that is, if we regard df, dg as mappings that take the curve C into the reals, R, then a df + b dg is another
such mapping. What we need to do is define these things in a way that applies to general manifolds.

Consider an arbitrary linear mapping on curves,

ω̃ : C → R

Linearity guarantees that for any such mapping, we can divide the curve C (λ) into small pieces,

Ck (λ) = {C (λ) | λ ∈ [λk, λk+1]}

so that Ck is the piece of C running from parameter values λk to λk+1. Clearly,

C (λ) =
n∑
k=0

Ck (λ)

and by the linearity of ω̃,

ω̃ (C (λ)) =
n∑
k=0

ω̃ (Ck (λ))

Now use charts to write this in coordinates:

ω̃ (C (λ)) =
n∑
k=0

ω̃ ◦ φ−1 ◦ φ ◦ Ck (λ)

where

ω̃ ◦ φ−1 : Rn → R

φ ◦ Ck (λ) : R → Rn

so that the right side is a mapping from points along a curve, xα (λ), in Rn to the reals, R, giving a function,
f (λ).

Now consider the sum,
n∑
k=0

ω̃ ◦ φ−1 ◦ φ ◦ Ck (λ)

Let n become large so that λk+1−λk → dλ. Then φ◦Ck (λ) is just the coordinate change, dxα (λ) = dxα

dλ dλ,
for an infinitesimal piece of the curve from λ to λ + dλ. The form returns the value a real number which
must depend linearly on this coordinate displacement,

ω̃ ◦ φ−1 (dxα) = ωαdx
α

In the limit, the sum becomes an integral along the curve C,

ω̃ (C (λ)) =
ˆ

C

ωαdx
α

Again, we make an operator interpretation. The form is the integrand,

ω̃ = ωαdx
α

The components of the form are ωα and the coordinate differentials dxα form a basis. The operation of ω̃
on any curve C is the integral of ω̃ along the curve. We may also write the integral as an integral over λ,

ω̃ (C (λ)) =
ˆ

C

ωα
dxα

dλ
dλ

=
ˆ

C

f (λ) dλ
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where

f (λ) = ωα
dxα

dλ

is a mapping to the reals, given by combining the form with a tangent vector. This is just the mapping of ω̃
on an infinitesmal curve dxα

dλ dλ. Writing the tangent vector in components, φ
(
~t
)

= dxα

dλ , we may also write
the form as a linear mapping on vectors,

ω̃
(
~t
)

= ωα
dxα

dλ

This expression, like ω̃ (C), is independent of the basis.
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