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One of the hurdles to learning general relativity is the use of vector indices as a calculational tool.
While you will eventually learn tensor notation that bypasses some of the index usage, the essential form of
calculations often remains the same.

Index notation allows us to do more complicated algebraic manipulations than the vector notation that
works for simpler problems in Euclidean 3-space. Even there, many vector identities are most easily estab-
lished using index notation. When we begin discussing 4-dimensional, curved spaces, our reliance on algebra
for understanding what is going on is greatly increased. We cannot make progress without these tools.

1 Three dimensions
To begin, we translated some 3-dimensional formulas into index notation. You are familiar with writing
boldface letters to stand for vectors. Each such vector may be expanded in a basis. For example, in our
usual Cartesian basis, every vector v may be written as a linear combination

v = vx î + vy ĵ + vzk̂

We need to make some changes here:

1. Replace the x, y, z labels with a numbers 1, 2, 3:

(vx, vy, vz) −→ (v1, v2, v3)

2. Write the labels raised instead of lowered.

(v1, v2, v3) −→
(
v1, v2, v3

)
3. Use a lower-case Latin letter to run over the range, i = 1, 2, 3. This means that the single symbol, vi

stands for all three components, depending on the value of the index, i.

4. Replace the three unit vectors by an indexed symbol:

êi

so that ê1 = î, ê2 = ĵ and ê3 = k̂

With these changes the expansion of a vector v simplifies considerably because we may use a summation:

v = vx î + vy ĵ + vzk̂

= v1ê1 + v2ê2 + v3ê3

=
3∑

i=1

viêi
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We have chosen the index positions, in part, so that inside the sum there is one index up and one down. We
will continue this convention, noting only that there is a deeper reason for the distinction between the index
positions, to be discussed later.

Linear combinations of vectors are also vectors. Thus, if we have two vectors expanded in a basis,

v =
3∑

i=1

viêi

u =
3∑

i=1

uiêi

we may take the linear combination,

αu + βv = α

3∑
i=1

uiêi + β

3∑
i=1

viêi

= α
(
u1ê1 + u2ê2 + u3ê3

)
+ β

(
v1ê1 + v2ê2 + v3ê3

)
=

(
αu1ê1 + αu2ê2 + αu3ê3

)
+
(
βv1ê1 + βv2ê2 + βv3ê3

)
= αu1ê1 + αu2ê2 + αu3ê3 + βv1ê1 + βv2ê2 + βv3ê3

= αu1ê1 + βv1ê1 + αu2ê2 + βv2ê2 + αu3ê3 + βv3ê3

=
(
αu1 + βv1

)
ê1 +

(
αu2 + βv2

)
ê2 +

(
αu3 + βv3

)
ê3

=
3∑

i=1

(
αui + βvi

)
êi

Index notation lets us omit all of the intermediate steps in this calculation. Multiplication distributes over
addition and addition commutes, so we can immediately see that

α

3∑
i=1

uiêi + β

3∑
i=1

viêi =
3∑

i=1

(
αui + βvi

)
êi

The inner product and cross product of two vectors is easy to accomplish. For the inner (dot) product,

u · v =

(
3∑

i=1

uiêi

)
·

 3∑
j=1

vj êj


Notice that in writing this expression, we have been careful to write different indices in the two sums. This
way we always know which things are being summed with which. Distributing the dot product over the sum,
and recalling that (αu) · v = α (u · v),

u · v =

(
3∑

i=1

uiêi

)
·

 3∑
j=1

vj êj


=

3∑
i=1

3∑
j=1

uivj (êi · êj)

Something important has happened here. We started by multiplying two sums of three terms each, and end
by writing a general expression, uivj (êi · êj), that encompasses all of the resulting nine terms very concisely.
Notice that we can bring both ui and vj anywhere in the expression because the i and j indices tell us that
vj is summed with êj , no matter where they occur in the expression.
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1.1 Dot product
Now we only need to know the dot products of the basis vectors. Since the vectors are orthonormal, we get
1 if i = j and 0 if i 6= j. We write

êi · êj = gij

where in this basis gij is exactly this: 1 if i = j and zero otherwise. This matrix is called the metric. In
Euclidean space and Cartesian coordinates, the metric is just the unit matrix

gij =

 1 0 0
0 1 0
0 0 1


but in a general basis it will differ from this. The metric is always symmetric, gij = gji. Introduce this
symbol into our expression for the dot product,

u · v =
3∑

i=1

3∑
j=1

uivj (êi · êj)

=
3∑

i=1

3∑
j=1

uivjgij

Now we introduce a further convention. When the metric is summed with the components of a vector, we
get a related vector but with the index down:

vi =
3∑

j=1

vjgij

When gij is the unit matrix, then the three numbers vi are the same as the the three numbers vi, but this
will not always be the case. This convention gives us the final form

u · v =
3∑

i=1

uivi

Notice that the sum is still over one up and one down index.
We may define the inverse of raising an index by defining

gij ≡ (gij)
−1

The metric is the only object where the raised index version and lowered index versions are defined this way.
For all other objects, the metric provides this relationship:

vi =
3∑

j=1

gijvj

vi =
3∑

j=1

gijv
i

Tij =
3∑

m=1

3∑
n=1

gimgjnT
mn

T i
j =

3∑
n=1

gjnT
in
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The metric must not be confused with another important tensor, the Kronecker delta, which always has
components 1 on the diagonal and 0 elsewhere, regardless of the basis. Furthermore, the Kronecker delta
always has one raised and one lowered index,

δi
j = δ i

j =

 1 0 0
0 1 0
0 0 1


1.2 Cross product
The cross product leads us to introduce another important object called the Levi-Civita tensor. In our
Cartesian basis, it is a 3-index collection of numbers, εijk. Such an object has 27 components, but the
Levi-Civita tensor is defined to be totally antisymmetric – the sign changes under interchange of any pair of
indices. Thus, for example, ε123 = −ε132. This means that for any components with two of i, j or k having
the same value, that component must vanish: we have ε212 = −ε212 by interchanging the 2s, and there for
ε212 = 0. Most components vanish, the only nonvanishing ones being those where i, j, k are all different.
The nonzero components all have value ±1:

ε123 = ε231 = ε312 = +1
ε132 = ε213 = ε321 = −1

Using εijk we can write index expressions for the cross product and curl. Start by raising an index on
εijk,

εi
jk =

3∑
m=1

δimεmjk

Notice that when we have indices both up and down, we maintain the their horizontal displacement to keep
track of which index is which. In this simple Cartesian case, εi

jk has the same numerical values as εijk. Now
the ith component of the cross product is given by

[u× v]i =
3∑

j=1

3∑
k=1

εi
jku

jvk

It is crucial to distinguish between “free indices” – those which are not summed, and “dummy indices” which
are summed over. The free indices in every term must match exactly; thus, our expression above has a single
raised i index in both terms. The j, k indices are dummy indices, which must always occur in pairs, one up
and one down.

We check this result by simply writing out the sums for each value of i,

[u× v]1 =
3∑

j=1

3∑
k=1

ε1jku
jvk

= ε123u
2v3 + ε132u

3v2 + (all other terms are zero)
= u2v3 − u3v2

[u× v]2 =
3∑

j=1

3∑
k=1

ε2jku
jvk

= ε231u
3v1 + ε213u

1v3

= u3v1 − u1v3

[u× v]3 =
3∑

j=1

3∑
k=1

ε3jku
jvk

= u1v2 − u2v1
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We get the curl by replacing ui by ∇i = ∂
∂xi , but the derivative operator is defined to have a down

index, and this means we need to change the index positions on the Levi-Civita tensor again. Setting
εij

k = δjmεi
mk we have

[∇× v]i =
3∑

j=1

3∑
k=1

εij
k∇jv

k

Checking individual components as above,

[∇× v]1 =
∂v3

∂x2
− ∂v2

∂x3

[∇× v]2 =
∂v1

∂x3
− ∂v3

∂x1

[∇× v]3 =
∂v2

∂x1
− ∂v1

∂x2

If we sum these expressions with our basis vectors êi, we may write these as vectors:

u× v =
3∑

i=1

[u× v]i êi

=
3∑

i=1

3∑
j=1

3∑
k=1

εi
jku

jvkêi

∇× v =
3∑

i=1

3∑
j=1

3∑
k=1

εij
k

(
∇jv

k
)
êi

1.3 The Einstein summation convention
By now it is becoming evident that there are far too many summation symbols in our expressions. For-
tunately, our insistence that dummy indices always occur in matched up-down pairs can releive us of this
burden. Consider what happens to our expression for the cross product, for example, if we simply omit the
summation symbols:

[u× v]i = εi
jku

jvk

There is a simple rule here: indices which occur matched across terms are free; indices which occur in
matched up-down pairs are summed. We do not need the

∑3
j=1 to see that the j indices should be summed.

From now on, every matched, up-down pair of indices is to be summed. This is the Einstein summation
convention.

Using the convention, our previous results are now written as:

u · v = giju
ivj = uivi

u× v = εi
jku

jvkêi

∇× v = εij
k

(
∇jv

k
)
êi

and

[u× v]i = εi
jku

jvk

[∇× v]i = εij
k∇jv

k
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1.4 Identities involving the Levi-Civita tensor
There are useful identities involving pairs of Levi-Civita tensors. The most general is

εijkεlmn = δi
lδ

j
mδ

k
n + δi

mδ
j
nδ

k
l + δi

nδ
j
lδ

k
m − δi

lδ
j
nδ

k
m − δi

nδ
j
mδ

k
l − δi

mδ
j
lδ

k
n

To check this, first notice that the right side is antisymmetric in i, j, k and antisymmetric in l,m, n. For
example, if we interchange i and j, we get

εjikεlmn = δj
lδ

i
mδ

k
n + δj

mδ
i
nδ

k
l + δj

nδ
i
lδ

k
m − δ

j
lδ

i
nδ

k
m − δj

nδ
i
mδ

k
l − δj

mδ
i
lδ

k
n

Now interchange the first pair of Kronecker deltas in each term, to get i, j, k in the original order, then
rearrange terms, then pull out an overall sign,

εjikεlmn = δi
mδ

j
lδ

k
n + δi

nδ
j
mδ

k
l + δi

lδ
j
nδ

k
m − δi

nδ
j
lδ

k
m − δi

mδ
j
nδ

k
l − δi

lδ
j
mδ

k
n

= −δi
lδ

j
mδ

k
n − δi

mδ
j
nδ

k
l − δi

nδ
j
lδ

k
m + δi

lδ
j
nδ

k
m + δi

nδ
j
mδ

k
l + δi

mδ
j
lδ

k
n

= −εijkεlmn

Total antisymmetry means that if we know one component, the others are all determined uniquely. Therefore,
set i = l = 1, j = m = 2, k = n = 3, to see that

ε123ε123 = δ11δ
2
2δ

3
3 + δ12δ

2
3δ

3
1 + δ13δ

2
1δ

3
2 − δ11δ23δ32 − δ13δ22δ31 − δ12δ21δ33

= 1 · 1 · 1 + 0 · 0 · 0 + 0 · 0 · 0− 1 · 0 · 0− 0 · 1 · 0− 0 · 0 · 1
= 1

Check one more case. Let i = 1, j = 2, k = 3 again, but take l = 3,m = 2, n = 1. Then we have

ε123ε321 = δ13δ
2
2δ

3
1 + δ12δ

2
1δ

3
3 + δ11δ

2
3δ

3
2 − δ13δ21δ32 − δ11δ22δ33 − δ12δ23δ31

= 0 · 1 · 0 + 0 · 0 · 1 + 1 · 0 · 0− 0 · 0 · 0− 1 · 1 · 1− 0 · 0 · 0
= −1

as expected.
We get a second identity by setting n = k and summing. Observe that the sum, δk

k = δ11 + δ22 + δ33 = 3,
while δj

kδ
k
j = δi

j . We find

εijkεlmk = δi
lδ

j
mδ

k
k + δi

mδ
j
kδ

k
l + δi

kδ
j
lδ

k
m − δi

lδ
j
kδ

k
m − δi

kδ
j
mδ

k
l − δi

mδ
j
lδ

k
k

= 3δi
lδ

j
m + δi

mδ
j
l + δi

mδ
j
l − δ

i
lδ

j
m − δi

lδ
j
m − 3δi

mδ
j
l

= (3− 1− 1) δi
lδ

j
m − (3− 1− 1) δi

mδ
j
l

= δi
lδ

j
m − δi

mδ
j
l

so we have a much simpler, and very useful, relation

εijkεlmk = δi
lδ

j
m − δi

mδ
j
l

A second sum gives another identity. Setting m = j and summing again,

εijkεljk = δi
lδ

j
j − δ

i
jδ

j
l

= 3δi
l − δi

l

= 2δi
l

Setting the last two indices equal and summing provides a check on our normalization,

εijkεijk = 2δi
i = 6
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This is correct, since there are only six nonzero components and we are summing their squares.
Collecting these results,

εjikεlmn = δj
lδ

i
mδ

k
n + δj

mδ
i
nδ

k
l + δj

nδ
i
lδ

k
m − δ

j
lδ

i
nδ

k
m − δj

nδ
i
mδ

k
l − δj

mδ
i
lδ

k
n

εijkεlmk = δi
lδ

j
m − δi

mδ
j
l

εijkεljk = 2δi
l

εijkεijk = 6

We demonstrate the usefulness of these properties by proving some vector identities. First, consider the
triple product. Working from the outside in,

u · (v ×w) = ui [v ×w]i
= uiεijkv

jwk

= εijku
ivjwk

Because εijk = εkij = εjki, we may write this in two other ways,

εijku
ivjwk = εjkiu

ivjwk = εkiju
ivjwk

uiεijkv
jwk = vjεjkiw

kui = wkεkiju
ivj

u · (v ×w) = v · (w × u) = w · (u× v)

proving that the triple product may be permuted cyclically.
Next, consider a double cross product:

[u× (v ×w)]i = εi
jku

j [v ×w]k

= εi
jku

jεk
lmv

lwm

= εi
jkε

k
lmu

jvlwm

= εijkεlmkujv
lwm

=
(
δi

lδ
j
m − δi

mδ
j
l

)
ujv

lwm

= δi
lδ

j
mujv

lwm − δi
mδ

j
lujv

lwm

= umv
iwm − ulv

lwi

= vi (u ·w)− wi (u · v)

Returning fully to vector notation, this is the BAC − CAB rule,

u× (v ×w) = (u ·w)v − (u · v)w

Finally, look at the curl of a cross product,

[∇× (v ×w)]i = εij
k∇j [v ×w]k

= εij
k∇j

(
εk

lmv
lwm

)
= εij

kε
k
lm∇j

(
vlwm

)
= εijkεklm∇j

(
vlwm

)
= εijkεlmk

((
∇jv

l
)
wm + vl (∇jw

m)
)

=
(
δi

lδ
j
m − δi

mδ
j
l

) ((
∇jv

l
)
wm + vl (∇jw

m)
)

= δi
lδ

j
m

(
∇jv

l
)
wm + δi

lδ
j
mv

l (∇jw
m)− δi

mδ
j
l

(
∇jv

l
)
wm − δi

mδ
j
lv

l (∇jw
m)

=
(
∇jv

i
)
wj + vi

(
∇jw

j
)
−
(
∇jv

j
)
wi − vj∇jw

i
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Restoring the vector notation, we have

∇× (v ×w) = (w · ∇)v + (∇ ·w)v − (∇ · v)w − (v · ∇)w

If you doubt the advantages here, try to prove these identities by explicitly writing out all of the components!

1.5 Practice with index notation
Borrowed from Jackson, Classical Electrodynamics

1. Prove the following identities using index notation.

a · (b× c) = c · (a× b) = b · (c× a)
a× (b× c) = b (a · c)− c (a · b)

(a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c)

2. The grad operator, ∇, is treated like a vector with components ∇i = ∂
∂xi

, but it is also an operator.
The thing to remember is that it always obeys the product rule. For example, for a function, f , and a
vector, a,

∇ · (fa) = ∇i (fai)
= (∇if) ai + f∇iai

= (∇f) · a + f∇ · a

Prove the following two identities. Both of these require results involving symmetry:

∇×∇f = 0
∇ · (∇× a) = 0

3. Prove the following identities:

∇× (fa) = (∇f)× a + f∇× a

∇× (∇× a) = ∇ (∇ · a)−∇2a

∇ (a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a)
∇ · (a× b) = b · (∇× a)− a · (∇× b)
∇× (a× b) = a (∇ · b)− b (∇ · a) + (b · ∇)a− (a · ∇)b
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