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1 The Lie Derivative
With or without the covariant derivative, which requires a connection on all of spacetime, there is another
sort of derivation called the Lie derivative, which requires only a curve.

Let C : R→M be a curve inM with tangent vectors, ξ = d
dλ , with components

ξ = ξµ
∂

∂xµ
=
dxµ

∂λ

∂

∂xµ

The Lie derivative generalizes the directional derivative of a function,

df

dλ
= ξµ

∂f

∂xµ

to higher rank tensors. First, consider a vector field, v, defined onM. We define the Lie derivative of v at
a point P along C to be

Lξv = lim
ε→0

v (P + εξ)− v (P)
ε

where v (P + εξ) is the Lie transport of v along the curve. For simplicity, let P = C (λ = 0). Lie trans-
port involves taking the value of the vector field at a point on C, say, v (λ), and performing a coordinate
transformation to bring the point C (λ) back to P = C (0). The coordinate transformation we require is, for
infinitesimal λ = ε,

yα = xα − εξα (0)

The components of vα change as

ṽα (0) = vβ (λ)
∂yα

∂xβ

=
[
vβ (xµ (0) + εξµ)

] (
δαβ − ε∂βξα

)
=

[
vβ (0) + εξµ∂µv

β (0)
] (
δαβ − ε∂βξα

)
= vα (0) + εξµ∂µv

α (0)− εvβ (0) ∂βξα

The derivative is then

Lξv = lim
ε→0

v (P + εξ)− v (P)
ε

= lim
ε→0

vα (0) + εξµ∂µv
α (0)− εvβ (0) ∂βξα − v (0)

ε

= ξµ∂µv
α (0)− vβ (0) ∂βξα

An easy proof of the covariance of this result is that it equals the commutator of the two vectors,

Lξv = [ξ, v]
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which has the same form when ξ and v are expanded in components,

[ξ, v] =
[
ξα∂α, v

β∂β
]

= ξα∂αv
β∂β − vβ∂βξα∂α

=
(
ξβ∂βv

α − vβ∂βξα
)
∂α

The generalization to higher rank tensors is immediate because derivations must satisfy the Leibnitz rule.
Thus, for an outer product of two vectors,

Tαβ = uαvβ

we have

LξT
αβ = Lξ

(
uαvβ

)
= (Lξu

α) vβ + uα
(
Lξv

β
)

= (ξµ∂µuα − uµ∂µξα) vβ + uα
(
ξµ∂µv

β − vµ∂µξβ
)

= ξµ∂µ
(
uαvβ

)
− uµvβ∂µξα − uαvµ∂µξβ

= ξµ∂µT
αβ − Tµβ∂µξα − Tαµ∂µξβ

and so on for higher ranks, with one correction term, −Tα...µ...β∂µξν , for each index. For forms, we use the
directional derivative of a scalar,

Lξφ = ξµ
∂φ

∂xµ

together with φ = vαωα, for arbitrary vα,

ξµ
∂ (vαωα)
∂xµ

= Lξ (vαωα)

ξµ (∂µvα)ωα + vαξµ∂µωα = (Lξv
α)ωα + vαLξωα

ξµ (∂µvα)ωα + vαξµ∂µωα = ξβ (∂βvα)ωα − vβ (∂βξα)ωα + vαLξωα

vαξµ∂µωα = −vβ (∂βξα)ωα + vαLξωα

vαLξωα = vαξµ∂µωα + vα
(
∂αξ

β
)
ωβ

Since this must hold for all vα,
Lξωα = ξµ∂µωα + ωβ∂αξ

β

2 Symmetry
The Lie derivative is just the right tool for finding symmetry of a metric. The Lie derivative of the metric
tensor is

Lξgαβ = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ

Now suppose we have a congruence of curves, so that the collected tangent vectors form a vector field.
Suppose further we choose coordinates so that λ is one of the coordinates, xα0 , for α0 a single fixed direction.
Then the components of ξµ are constant,

ξµ =
dxµ

dλ
= δµα0

For example, if the curve is timelike, then we choose t = λ and we have ξµ = (1, 0, 0, 0). For such a choice,
∂βξ

µ = 0 and the Lie derivative of the metric is just

Lξgαβ =
dxµ

dλ
∂µgαβ

=
∂gαβ
∂λ
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This means that if this Lie derivative vanishes, the metric is independent of the coordinate λ. Since the
metric then does not change along the congruence of curves, we have a symmetry of the spacetime. Any
direction in which the metric is not changing is called an isometry.

We can find a differential equation to describe such symmetry directions. Setting the Lie derivative of
the metric to zero, we have

0 = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ

= ξµ∂µgαβ + [∂α (gµβξµ)− ξµ∂αgµβ ] + [∂β (gαµξµ)− ξµ∂βgαµ]
= ξµ∂µgαβ + ∂αξβ − ξµ∂αgµβ + ∂βξα − ξµ∂βgαµ
= ∂αξβ + ∂βξα − ξµ∂αgµβ − ξµ∂βgαµ + ξµ∂µgαβ

= ∂αξβ − ξµ
1
2

(∂αgµβ + ∂βgαµ − ∂µgαβ) + ∂βξα − ξµ
1
2

(∂αgµβ + ∂βgαµ − ∂µgαβ)

= ∂αξβ − ξµΓµβα + ∂βξα − ξµΓµαβ
= ∂αξβ − ξµΓµβα + ∂βξα − ξµΓµαβ
= Dαξβ +Dβξα

resulting in the Killing equation,
ξα;β + ξβ;α = 0

Given the metric, we can ask for all solutions to this equation. Solutions, if they exist, represent symmetry
directions of the spacetime, i.e., directions in which the metric is unchanging.

3 Example: Symmetries of Minkowski spacetime
Consider flat spacetime, for which the metric is Minkowski, ηµν . In Cartesian coordinates,

ηµν =


−1

1
1

1


and the Christoffel connection vanishes, Γαµν = 0. Then we may replace the covariant derivatives by partial
derivatives, and the Killing equation is simply

ξα,β + ξβ,α = 0

Taking a further derivative, we have
ξα,βµ + ξβ,αµ = 0

Now, cycle the indices twice, to give

ξα,βµ + ξβ,αµ = 0
ξβ,µα + ξµ,βα = 0
ξµ,αβ + ξα,µβ = 0

Adding the first two and subtracting the third we find

0 = ξα,βµ + ξβ,αµ + ξβ,µα + ξµ,βα − ξµ,αβ − ξα,µβ
= 2ξβ,αµ

so that the second derivative of ξβ vanishes. This means that ξβ must be linear in the coordinates,

ξα = aα + bαβx
β
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Substituting this into the Killing equation,

0 = ξα,β + ξβ,α

= bαβ + bβα

so that aα is arbitrary while bαb must be antisymmetric.
We now have 10 independent vector fields, each of the form

ξα = aα + bαβx
β

for independent choices of the 10 constants aα and bαβ = −bβα. The simplest choice of the 10 vector fields
is to take only one of the constants nonzero. If we take bαβ = 0 and one of the components (say, m for
m =, 0, 1, 2, 3) of aα nonzero, we get four constant vector fields,

ξα(m) = δαm

This represents a unit vector in each of the coordinate directions. Since they are constant, the integral curves
are just the Cartesian coordinate axes, and the metric is indeed independent of each of these.

Now setting aα = 0 and choosing one of the six antisymmetric matrices bαβ , we have either rotations or
boosts. For example, with b21 = −b12 = 1, with all the rest zero, the vector field is

ξ = ξα∂α

=
(
ηαβbβµx

µ
)
∂α

= x
∂

∂y
− y ∂

∂x

This is the generator of a rotation around the z axis. Similarly, b23 = −b32 and b31 = −b13 lead to the
generators of rotations around the x and y axes. If one of the nonzero indices is time, then we have a boost
because of the sign change. For b10 = −b01 = 1, we find

ξ = ξα∂α

=
(
ηαβbβµx

µ
)
∂α

= x
∂

∂t
+ t

∂

∂x

This is a generator for a Lorentz transformation. To see this, exponentiate the generator with a parameter,

Λ = exp
[
λ

(
x
∂

∂t
+ t

∂

∂x

)]
=

∞∑
n=0

1
n!
λn
(
x
∂

∂t
+ t

∂

∂x

)n
Consider the effect on the coordinates (t, x, y, z). Clearly, Λy = Λz = 0. For t we need(

x
∂

∂t
+ t

∂

∂x

)
t = x(

x
∂

∂t
+ t

∂

∂x

)2

t =
(
x
∂

∂t
+ t

∂

∂x

)
x

= t

and so on, alternating between x and t. The even and odd parts of the series therefore sum separately,

Λt =
∞∑
n=0

1
n!
λn
(
x
∂

∂t
+ t

∂

∂x

)n
t
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=
∞∑
m=0

1
(2m+ 1)!

λ2m+1x+
∞∑
m=0

1
(2m)!

λ2mt

= x sinhλ+ t coshλ

Similarly, acting on x we get
Λx = t sinhλ+ x coshλ

We recognize λ as the rapidity, and the full transformation,

Λt = x sinhλ+ t coshλ
Λx = t sinhλ+ x coshλ
Λy = y

Λz = z

as a boost in the x-direction.
We therefore find exactly 10 isometries in Minkowski space. This is the maximum number of independent

solutions to the Killing equation. The static, spherically symmetric Schwarzschild solution had one timelike
Killing field and three spatial rotational Killing fields for a total of three. A generic spacetime has no
isometries.

4 Example: Static, Spherically Symmetric Spacetimes
We may now say what we mean by a static, spherically symmetric spacetime. To be static, there must be
a timelike Killing vector field; to be spherically symmetric, we require a full set of three rotational (hence
spacelike) Killing vectors.

We use the Lie derivative to say restrict the form of the metric for a static, spherically symmetric
spacetime.

If we want a static spacetime, it means that we want there to exist a timelike Killing vector field. Choosing
the time coordinate to be the parameter t = λ, the symmetry condition becomes

0 = Lξgαβ
= ξµ∂µgαβ + ∂αξ

µgµβ + ∂βξ
µgαµ

However, with x0 = t = λ, the components of ξ are constant, so that

∂αξ
µ = 0

Therefore,

0 = ξµ∂µgαβ

=
∂

∂t
(gαβ)

and we have a coordinates system in which the metric is independent of the time coordinate.
For the spherical symmetry, we know that we have three rotational Killing vector fields which together

generate SO (3). We can pick two of these for coordinates, but they will not commute with one another, so
the metric will not be independent of both coordinates. Starting with the familiar form

ξ1 = y
∂

∂z
− z ∂

∂y

ξ2 = z
∂

∂x
− x ∂

∂z

ξ3 = x
∂

∂y
− y ∂

∂x
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it is natural to choose one coordinate, ϕ, such that

∂

∂ϕ
= x

∂

∂y
− y ∂

∂x

is a Killing vector. To describe a second direction, we want a linear combination of the remaining two
rotations,

α (ϕ) ξ1 + β (ϕ) ξ2

and we want this to remain orthogonal to ξ3,

0 = 〈ξ3, αξ1 + βξ2〉

=
〈
x
∂

∂y
− y ∂

∂x
, α

(
y
∂

∂z
− z ∂

∂y

)
+ β

(
z
∂

∂x
− x ∂

∂z

)〉
= x

〈
∂

∂y
, α

(
y
∂

∂z
− z ∂

∂y

)
+ β

(
z
∂

∂x
− x ∂

∂z

)〉
− y

〈
∂

∂x
, α

(
y
∂

∂z
− z ∂

∂y

)
+ β

(
z
∂

∂x
− x ∂

∂z

)〉
= x

〈
∂

∂y
,−αz ∂

∂y

〉
− y

〈
∂

∂x
, βz

∂

∂x

〉
= −αzx

〈
∂

∂y
,
∂

∂y

〉
− βzy

〈
∂

∂x
,
∂

∂x

〉
= −z (αx+ βy)
= −r sin θz (α cosϕ+ β sinϕ)

To get zero, we can take

α = sinϕ
β = − cosϕ

Then we have

ξ4 = ξ1 sinϕ+ ξ2 cosϕ

= sinϕ
(
y
∂

∂z
− z ∂

∂y

)
− cosϕ

(
z
∂

∂x
− x ∂

∂z

)
= sinϕ

(
r sin θ sinϕ

∂

∂z
− r cos θ

∂

∂y

)
− cosϕ

(
r cos θ

∂

∂x
− r sin θ cosϕ

∂

∂z

)
= r sin θ sinϕ sinϕ

∂

∂z
− r cos θ sinϕ

∂

∂y
− r cosϕ cos θ

∂

∂x
+ r sin θ cosϕ cosϕ

∂

∂z

= − cos θ
(
r cosϕ

∂

∂x
+ r sinϕ

∂

∂y

)
+ r sin θ

∂

∂z

= − cos θ
(
x
∂

∂x
+ y

∂

∂y

)
− r sin θ

∂

∂z

Compare

∂

∂x
=

x

r

∂

∂r
+

1√
x2 + y2

xz

r2
∂

∂θ
− y

x2 + y2

∂

∂ϕ

= sin θ cosϕ
∂

∂r
+

1
r

cos θ cosϕ
∂

∂θ
− 1
r

sinϕ
sin θ

∂

∂ϕ

∂

∂y
=

y

r

∂

∂r
+

1√
x2 + y2

yz

r2
∂

∂θ
+

x

x2 + y2

∂

∂ϕ
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= sin θ sinϕ
∂

∂r
+

1
r

cos θ sinϕ
∂

∂θ
+

1
r

cosϕ
sin θ

∂

∂ϕ

∂

∂z
=

z

r

∂

∂r
−
√
x2 + y2

r2
∂

∂θ

= cos θ
∂

∂r
− sin θ

r

∂

∂θ

so we have

ξ4 = − cos θ
(
x
∂

∂x
+ y

∂

∂y

)
+ r sin θ

∂

∂z

= cos θ
(
r sin θ cos2 ϕ

∂

∂r
+ cos θ cos2 ϕ

∂

∂θ
+ r sin θ sin2 ϕ

∂

∂r
+ cos θ sin2 ϕ

∂

∂θ

)
−r sin θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= r sin θ cos θ

∂

∂r
+ cos2 θ

∂

∂θ
− r sin θ cos θ

∂

∂r
+ sin2 θ

∂

∂θ

= cos2 θ
∂

∂θ
+ sin2 θ

∂

∂θ

=
∂

∂θ

We may therefore take two of the Killing vectors to be

ξ4 =
∂

∂θ

ξ3 =
∂

∂ϕ

giving two coordinates, θ, ϕ, corresponding to symmetry directions. Since these do not commute, the metric
cannot be independent of both.

7


