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We now have the Einstein equation in the form

Gαβ = κTαβ

where the Einstein tensor is given in terms of the Ricci tensor and Ricci scalar by

Gαβ = Rαβ − 1
2
gαβR

The solution of the Einstein equation for a static, spherically symmetric, vacuum spacetime is the Schwarzschild
metric:

ds2 = −
(
a− r0

r

)
dt2 +

dr2

a− r0
r

+ r2dθ2 + r2 sin2 θdϕ2

We still have to determine the constants in these equations. The value of κ in the Einstein equation tells
us how strongly a given matter distribution affects the curvature of spacetime, while the constant r0 in the
Schwarzschild solution should be related to the mass of the spherical body that gives rise to it.

We now determine each of these constants by studying weak gravity situations.

1 Determining the constant in the Schwarzschild solution
We impose two conditions in order to determine the constants in the Schwarzschild solution:

1. At large distance from the spherical source, the spacetime becomes flat,

lim
r→∞

(
ds2
)

= −c2dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2

2. For weak gravity and low velocity, the motion of a test particle should agree with the Newtonian
prediction. Specifically, a geodesic of the Schwarzschild geometry, for r0

r � 1 and v � 1 must agree
with the Newtonian law,

−GMm

r2
r = m

dv
dt

Satisfying the first condition immediately gives a = 1, in the line element. The second point requires us to
look at the geodesic equation.

There is one remaining constant in this solution, and since we expect the solution to describe gravity
near a spherical body, we should be able to determine its value by comparing this result with Newton’s law
of gravity. The comparison requires us to consider the motion of a particle in a region of small curvature
and low velocity. It is sufficient to consider a particle orbit far from the source, where the orbit must look
like the Newtonian result.

The motion of such a particle is given by the geodesic equation,

duα

dτ
= −Γαµνu

µuν
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where uα is the 4-velocity of the particle. The 4-velocity is

uα =
(
c
dt

dτ
,
dr

dτ
,
dθ

dτ
,
dϕ

dτ

)
=

dt

dτ

(
c, ṙ, θ̇, ϕ̇

)
where the dot denotes a t derivative, d

dt . The proper time is given by

dτ2 =
(

1− r0
r

)
dt2 +

1
c2

(
dr2

1− r0
r

+ r2dθ2 + r2 sin2 θdϕ2

)
=

(
1− r0

r

)
dt2 +

1
1− r0

r

ṙ

c2
+
r2θ̇

c2
+
r2ϕ̇2 sin2 θ

c2

where the second line holds for low velocities. From this, we have

dt

dτ
=
(

1− r0
r

)−1

We need only the very lowest approximation to the geodesic equation. assuming r0
r � 1 and v2

c2 � 1, we
have

dt

dτ
≈ 1

uα ≈ (c, 0, 0.0)

This is enough to find the lowest order acceleration,

duα

dτ
= −Γαµνu

µuν

= −c2Γα00

Consulting our table of connection coefficients, we see that the only contribution is from

Γr00 =
ff ′

g2

= f3f ′

=
(

1− r0
r

)3/2 1
2

(
1− r0

r

)−1/2 (r0
r2

)
≈ r0

2r2

The only acceleration is therefore in the r direction, and is given by

dur

dτ
=
dt

dτ

d2r

dt2
= −r0c

2

2r2

so with dt
dτ ≈ 1

d2r

dt2
= −r0c

2

2r2

Comparing to the Newtonian prediction,

m
d2r

dt2
= −GMm

r2

d2r

dt2
= −GM

r2
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we set

r0c
2

2
= GM

r0 =
2GM
c2

We now have the Schwarzschild line element, given by

ds2 = −
(

1− 2GM
rc2

)
dt2 +

dr2

1− 2GM
rc2

+ r2dθ2 + r2 sin2 θdϕ2

Notice the importance of the cancellation of the mass of the particle in Newton’s law:

m
d2r

dt2
= −GMm

r2

d2r

dt2
= −GM

r2

Without this, the acceleration would depend on the mass of the particle, and there would not be a single
geometry that would account for all orbits. The line element is typically written choosing gravitational units,

G = 1
c = 1

so we have the more compact expression

ds2 = −
(

1− 2M
r

)
dt2 +

dr2

1− 2M
r

+ r2dθ2 + r2 sin2 θdϕ2

This describes gravity for objects as diverse as the moon, neutron stars, and black holes.

2 The constant in the Einstein equation
To determine the constant in the Einstein equation, we compare it to the Newtonian gravity theory. While
Newton’s law of gravitation is often stated in terms of two point masses,

F = −GMm

r2
r̂

we can easily write it as a scalar field theory. First, write the potential,

φ = −GM
r

and write the mass as an integral over a mass density, ρ (x′). Then, sum over infinitesimal volume elements
to get the total potential

φ (x) =
ˆ
d3x′

Gρ

|x− x′|
Then taking the Laplacian of both sides,

∇2φ (x) =
ˆ
d3x′Gρ (x′)∇2 1

|x− x′|

= −4π
ˆ
d3x′Gρ (x′) δ3 (x− x′)

= −4πGρ (x)
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so we have
∇2φ (x) = −4πGρ (x)

An important difference between general relativity and Newtonian gravity is that the potential and source
differ. For Newtonian gravity, the potential and source are scalars, φ, ρ. But general relativity takes all
forms of energy and momentum, Tαβ , into account for the source, with the equally diverse metric, gαβ ,
providing the potential. To compare the two, we look only at the corresponding piece of the Einstein
equation, G00 = κT 00 = κρc2. Because of the presence of c2 in this term, it is the dominant term in weak
gravity situations.

Now we need to develop the Einstein theory of gravity in a comparable form. This is achieved by
linearizing the theory.

Consider a nearly flat metric of the form

gαβ = ηαβ + hαβ

where hαβ = hβα is small enough that we can ignore terms of order h2. Then the inverse metric is given by

gαβ = ηαβ − hαβ

where
hαβ = ηαµηβνhµν

Since we only keep terms to first order, we may use ηµν and ηµν to raise and lower indices on any terms
involving hµν .

Since the connection must be at least linear in hαβ , the connection-squared terms in the curvature may
be neglected, giving the same form (for a different reason) as given in eq. 6.68:

Rαβµν =
1
2

(gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ)

=
1
2

(hαν,βµ − hαµ,βν + hβµ,αν − hβν,αµ)

The Ricci tensor is then

Rβν = gαµRαβµν

=
1
2

(ηαµ + hαµ) (hαν,βµ − hαµ,βν + hβµ,αν − hβν,αµ)

≈ 1
2
ηαµ (hαν,βµ − hαµ,βν + hβµ,αν − hβν,αµ)

=
1
2
(
hαν,βα − h,βν + hαβ,να −�hβν

)
where � is the flat space d’Alembertian, � = ηαβ∂α∂β . The Ricci scalar is

R = hαβ,βα −�h

so the Einstein tensor is

Gβν =
1
2
(
hαν,βα − h,βν + hαβ,να −�hβν

)
− 1

2
ηβν

(
hαµ,αµ −�h

)
Let

Hαβ = hαβ −
1
2
hηαβ

H = −h

hαβ = Hαβ −
1
2
Hηαβ
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Then

Gβν =
1
2

((
Hα

ν −
1
2
Hδαν

)
,βα

+H,βν +
(
Hα

β −
1
2
Hδαβ

)
,να

)

−1
2

(
�

(
Hβν −

1
2
Hηβν

)
+ ηβν

(
Hαµ − 1

2
Hηαµ

)
,αµ

+ ηβν�H

)

=
1
2

(
Hα

ν,βα −
1
2
H,βν +H,βν +Hα

β,να −
1
2
H,βν

)
−1

2

(
�Hβν −

1
2
�Hηβν + ηβνH

αµ
,αµ −

1
2
ηβν�H + ηβν�H

)
=

1
2
(
Hα

ν,βα +Hα
β,να − ηβνHαµ

,αµ −�Hβν

)
Now, if we perform an infinitesimal coordinate transformation,

xα → yα = xα + ξα

then the metric changes to

gµν
∂xµ

∂yα
∂xν

∂yβ
= gµν

(
δµα + ξµ,α

) (
δνβ + ξν,β

)
= gαβ + gβµξ

µ
,α + gαµξ

µ
,β +O

(
ξ2
)

When we substitute our perturbative metric, this becomes

ηαβ + h̃αβ = ηαβ + hαβ + ξβ,α + ξα,β

where we may choose ξα any way we like without changing the physics. Then Hαβ changes by

H̃αβ = h̃αβ −
1
2
ηαβh̃

= hαβ + ξβ,α + ξα,β −
1
2
ηαβ

(
h+ 2ξµ,µ

)
= Hαβ + ξβ,α + ξα,β − ηαβξµ,µ

Choose ξα so that H̃αβ has vanishing divergence,

0 = H̃ ,β
αβ

= H ,β
αβ + ξ ,β

β,α + ξ ,β
α,β − ξ

µ
,µα

= H ,β
αβ + ξ ,β

α,β

by solving
�ξα = −H ,β

αβ

This wave equation with source always has a solution for reasonable functions. Notice that this coordinate
transformation still has a metric of the form ηµν + h̃µν , so the curvature has the same form in terms of h̃µν
as it does in terms of hµν .

With this choice of coordinates, we have

G̃βν = −1
2
�H̃βν
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Let H̃αβ be static, so that the wave operator reduces to the Laplacian, and substitute this into the Einstein
equation,

∇2H̃αβ = −2κTαβ

The energy-momentum tensor is dominated by the T 00 component,

T 00 = ρc2

where ρ is the mass density. Therefore, we compare the 00 component to the Newtonian gravity equation.
While the Einstein equation gives

−1
2
∇2H00 = κT 00

= κc2ρ

Newtonian gravity is described by
∇2φ = −4πGρ

Finally, we relate H̃00 to the potential. From the Schwarzschild solution, we have the potential for a
point mass in perturbative form:

η00 + h00 = −1 +
2GM
rc2

h00 =
2GM
rc2

=
2φ
c2

To construct H̃00, we need the trace as well. Write the full Schwarzschild line element as

ds2 = −
(

1− 2GM
rc2

)
dt2 +

dr2

1− 2GM
rc2

+ r2dθ2 + r2 sin2 θdϕ2

≈ −
(

1− 2GM
rc2

)
dt2 +

(
1 +

2GM
rc2

)
dr2 + r2dθ2 + r2 sin2 θdϕ2

= ds20 +
2GM
rc2

dt2 +
2GM
rc2

dr2

so that

hµν =


2GM
rc2

2GM
rc2

0
0


and therefore

h = gαβhαβ

= 0

The complete Hµν is therefore given by

Hµν =


2GM
rc2

2GM
rc2

0
0


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To get the divergence-free form of this, we require

H̃αβ = Hαβ + ξβ,α + ξα,β − ηαβξµ,µ
where

�ξα = −H ,β
αβ

�ξ0 = −H ,0
00 = 0

�ξr = −H ,r
rr

=
2GM
r2c2

The r-dependent part of the d’Alembertian turns this into

1
r

d2

dr2
(rξr) =

2GM
r2c2

d2

dr2
(rξr) =

2GM
rc2

d

dr
(rξr) =

2GM
c2

ln r

rξr =
2GM
c2

(r ln r − r)

ξr =
2GM
c2

(ln r − 1)

The remaining components vanish, so we have

ξµ,µ = ξr,r

=
∂

∂r

[
2GM
c2

(ln r − 1)
]

=
2GM
rc2

Therefore,

H̃00 = H00 + ξ0,0 + ξ0,0 − η00ξµ,µ

=
2GM
rc2

− η00
2GM
rc2

=
4GM
rc2

Therefore, in terms of the Newtonian potential,

H̃00 = −4φ
c2

so the Einstein equation gives

−1
2
∇2H̃00 = κT 00

2
c2
∇2φ = κc2ρ

Replacing ∇2φ with the Newtonian field equation, ∇2φ = −4πGρ, this becomes

2
c2

(−4πGρ) = κc2ρ

κ = −8πG
c4
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and the Einstein equation becomes

Gαβ = −8πG
c4

Tαβ

The relative sign depends on the sign in the definition of the curvature.
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