
Cosmology

The Discovery of the Universe

• You may recall that in 4-dimensions, the Einstein tensor is the only second rank, divergence
free tensor composed of the metric and its first and second derivatives. In its most general
form

Gµν = Rµν −
1

2
Rgµν + Λgµν

• Famously, Einstein first wrote this tensor with Λ = 0, introducing the linear multiple of the
metric in 1917 when he discovered that he could not find a stationary cosmological solution
to the field equations without Λ "= 0

• This was a time when we did not know much about the true nature of the Cosmos; indeed,
the controversy that dominated astronomy and astrophysics at the time was the question
as to whether or not the spiral nebulae were other distant galaxies, enormously far away, or
if they were simply clouds within our own Milky Way galaxy (which would, in this picture,
constitute the entire Universe).

• The Great Debate was resolved in 1924 by a 35 year old Edwin Hubble, who used the 100′′

Hooker Telescope on Mount Wilson to observe Cepheids in nearby spiral nebulae, proving
they were galaxies unto themselves.

• The discovery of the galaxies dispelled the idea that the Milky Way was the entire Universe,
and work on cosmography — the mapping of the Cosmos — began in earnest.

• In 1927, a Belgian priest, Georges Lemaitre, published a cosmological solution to the field
equations that suggested the Universe was expanding, having been born from a primeval
atom, and deriving a description of the expansion which is today known as Hubble’s Law 1

• In 1929, using observations of his own, combined with other data from Milton Humason
(who also worked at Mount Wilson), and Vesto Slipher (who worked at Lowell Observatory),
Hubble published one of the most important papers in Observational Cosmology — A Re-
lation Between Distance and Radial Velocity Among Extra-galactic Nebulae (PNAS 15, 168
[1929], available online at www.pnas.org/content/15/3/168.full.pdf+html)

• Part of sifting through vast amounts of astronomical data, particularly when you are trying
to learn what the principles governing the dynamics and evolution of astrophysical systems,
is looking for and discovering correlations between different observable physical properties.

• Hubble, using the new Cepheid variable technique, was able to measure the distances to

1In the last few years, there has been much attention paid to Lemaitre’s work, sparked by Sydney van
den Bergh’s examination of the original Frech manuscript (arxiv:1106.1195). A careful reading in French
suggests that the English translation (Lemaitre, MNRAS 91, 483 [1931]) was intentionally trimmed to avoid
credit for the discovery of the expansion going to Lemaitre instead of Hubble. David Block has suggested
that Hubble himself had a hand in this (arxiv:1106.3928).
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46 galaxies. He was also able to measure the speed of the galaxies relative to our own using
Doppler shifts. When he compared these two seemingly disparate quantities, he made a
great discovery: on large scales, all the galaxies are moving away from us; the farther away
they are, the faster they are receding.

• Hubble’s conclusions are illustrated in Figure 1 of his famous paper, shown below

• Hubble did what any good physics student would do, and made a linear fit to the data
(the line in the figure). The equation describing that line is now known as the Hubble Law :

v = Hod

• Here v is the recessional velocity, d is the proper distance, and the slope of this line, Ho, is
called the Hubble constant.

• So what does this mean? The interpretation is that the Universe is expanding. Every
galaxy is racing away from every other galaxy because the space between them is expanding!

• An often used analogy is to pretend you live in a two-dimensional Universe. One good
model to think about this is the surface of a balloon.

! Pick up a balloon, and inflate it slightly; draw several galaxies on its surface and
measure the distance between each galaxy.

! Now inflate the balloon a bit more. What happens? The rubber stretches ; in the
language of the Cosmos, the space between the galaxies is expanding.

! Now measure the distance between all the galaxies — every galaxy got farther away
from every other galaxy. The reason? The space between every galaxy expanded.
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Conundrum of the Recessional Speed

• Clever students who paid attention in special relativity will feel vaguely disastisfied with
the Hubble law,

v = Hod

because the speed v increases linearly with distance d. This means that there is a distance
at which v > c! Isn’t this a violation of the fundamental postulate of special relativity?

• The answer, of course, better be no , otherwise we would invalidate special relativity! So
what’s going on?

• The point here is that we are interpreting the redshift z as a spee. Special relativity says
that motion through space cannot exceed the speed of light. But in reality the galaxies aren’t
moving at all — the space between the galaxies is expanding!2

2A particularly nice article on misconceptions about the Big Bang is Lineweaver & Davis, “Mis-
concpetions about the Big Bang,” Scientific American, March 2005. They also have a nice paper at
arxiv:astro-ph/0310808.
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Cosmological Redshift

• The cosmological redshift is not a Doppler shift because it is not due to the relative motion
of the source and the observer; it is due to the expansion of space. However, the observations
of galaxies have traditionally been analyzed in the context of the Doppler shift, hence the
terminology recessional velocity.

• Because of this connection, it is convenient to express the interpreted observation, the
velocity v, in terms of the actual observed quantity, the redshift z. We can use the definition
of the redshift and the Doppler shift to do this:

z =
λobs − λemit

λemit
→ 1 + z =

λobs

λemit

• This is related to the Doppler effect by

1 + z =

√

1 + v/c

1− v/c
→ 1 + z = (1 + v/c)1/2(1− v/c)−1/2

• Applying the binomial expansion to each of the terms on the right hand side gives

1 + z $
(

1 +
v

2c

)(

1 +
v

2c

)

=
(

1 +
v

2c

)2

• Expanding and keeping only terms linear in v/c gives

1 + z $ 1 +
v

c
→ z $

v

c

• Using this with the Hubble law then yields

z =
Ho

c
d

Good Cosmological Models

• With the slow dawning of technology that allowed us to probe the Universe on large scales,
cosmological models were challenged to conform to observations. This is even truer today, as
modern satellite and telescope technology has given birth to an age of precision cosmology

• In the broadest strokes, any cosmological model must have three basic properties that we
see observationally:

! The model must be expanding uniformly, with the expansion described by the linear
Hubble law (at low redshfits)

! The model must be homogeneous; the Universe is the same everywhere and in all
directions. It is uniform in composition and content, no matter where we look.
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! The model must be isotropic about every point; the Universe must look the same in
every direction — there is no preferred center or direction.

• Note that isotropy implies homogeneity, but the converse is not true. An example of a
homogeneous but anisotropic Universe could be (for instance) a Universe with a constant #B
field pointing from left to right.

The Hubble Parameter

• A great deal of effort has been expended by astronomers to determine the value of the
Hubble parameter today, Ho (called the Hubble Constant). One of the primary justifications
for building the Hubble Space Telescope was the HST Key Project, to determine the most
accurate value of the Hubble constant known at that time.

• Early on in the development of observational cosmology, there were two threads of evidence
(and theoretical argument) about the value of Ho — the big Ho crowd favored values of
Ho $ 80 km/s/Mpc, and the low Ho crowd, favoring values of Ho $ 65km/s/Mpc. Even
today there is a spread in values for the Ho, but we have settled on values near 70 km/s/Mpc.
In the spring of 2013, the Planck mission released its first data set of the Cosmic Microwave
Background, yielding a new value of

Ho = 69.32± 0.80 km/s/Mpc

• What are with those units? They make sense based on Hubble’s graph — the slope is just
the Hubble constant. But reducing the units to their fundamental base units, we find the
Hubble constant has units of 1/TIME.

• For the current value of Ho the Hubble time is

τH =
1

Ho
= 4.45× 1017 s = 14.1× 109 yr

• If the Hubble Law is valid through the entire observable Universe, then the Hubble time
is an estimate of the age of the Universe.

The Expansion of the Cosmos

• The expansion of the Cosmos was predicted and described theoretically before it was
discovered. In 1927, Georges Lemaitre used general relativity to derive an equation for the
expansion rate, what is now called the Hubble constant.

•We are not going to go through the derivation of the equations governing cosmology, but we
will state (without proof) the equations essential to being able to understand the behaviour
and evolution of the Cosmos.

• If we want to mathematically describe the expansion of the Cosmos, we have to agree on
the quantities we are talking about.
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• Astronomers generally think of measuring the Cosmos the way we think of measuring
anything — we define coordinates used to define locations (in space and time). A common
set of coordinates in cosmology are the comoving coordinates. As their name suggests, they
are rigidly attached to objects in the Cosmos (like galaxies) and expand as the Cosmos
expands. This is shown in the figure below.

• The other common distance measure is the proper distance; it is the invariant distance
between two points in spacetime defined by relativity. In the context of cosmology, it is
useful to think of the proper distance as the distance you would measure between two points
if you could take a snapshot and freeze the expansion of the Cosmos for the time it takes
you to measure the distance of interest.

• At a particular cosmic time t, the proper distance dp = dp(t) is related to the comoving
distance do by a function called the scale factor 3, a(t)

dp = a(t) · do

• The scale factor represents the relative expansion of the Cosmos. Hubble characterized
the expansion using the constant Ho, so it must be related to the scale factor, and it is! If
t = to is the value of cosmic time today, then

Ho =

(

ȧ

a

)

t=to

3Be aware that there is not a universally accepted symbol for the scale factor; R(t) is also common.
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The Stuff in the Cosmos

• We have been writing the scale factor as a(t), implicitly suggesting that it can evolve as
a function of cosmic time. The equations that govern the expansion are called the Fried-
mann equations, first derived from general relativity by the Russian mathematical physicist,
Alexander Friedmann. Sadly, Friedmann died of typhoid fever in 1925 at the age of 37,
before the expansion of the Cosmos was observationally discovered.

• The expansion of the Cosmos depends on what is in the Cosmos. To address this question,
we adopt our intuition and strategy from our understanding of fluid dynamics. As such, the
quantities of interest are the densities and pressures of the stuff filling the Cosmos.

• There are several components to what fills the Cosmos: matter, radiation, and as we will
discover soon, dark energy. We write the density and pressure in the Cosmos as

ρ(t) = ρm(t) + ρr(t) + ρΛ

p(t) = pm(t) + pr(t) + pΛ

• We have certain expectations for how each of these quantities evolves with the cosmic
expansion. Let’s think about densities first. Consider a cube filled with each of the types of
stuff. Over some time, imagine that the uniform expansion of the Universe causes the sides
of the cube to increase their proper length by a factor of 2 (i.e. a doubling of a(t)), so the
proper volume increases by a factor of 8.

! Both ρΛ and pΛ are expected to be independent of time
! The number density n of particles has decreased by a factor 8 (corresponding to the
increase in proper volume). The mass of the particles m has not changed, and since
ρm = m · n, it must be the case that the mass density scales as

ρm ∝ 1/a3

! Since radiation is massless, the density ρr is related to the energy density of the ra-
diation. We have already seen from our study of the Hubble law that the cosmic
expansion causes radiation to be redshifted ; doubling the scale factor redshifts the
wavelength λ → 2λ, which cuts the energy of a bit of radiation in half (i.e. by a factor
of 1/a). We’ve already seen that the number density decreases by a factor of 1/a3, so
overall the effect on radiation is

ρr ∝ 1/a4

• Pressure and density are related to one another by an equation of state. In cosmology,
we use the form

pi = wiρic
2

where the parameter w is call the equation of state parameter. Every constituent i has a
corresponding value of wi that relates the pressure to the density.

7 Relativistic Astrophysics – Lecture



• For the different constituents we have been considering:

wΛ = −1 wrad =
1

3
wm ≥ 0

• The physics and evolution of the Cosmos at any given moment is governed by which
constituents have dominance in terms of their overall contribution to the energy density of
the Universe. Using the dependences noted above, the energy density as function of cosmic
time can be plotted as below.

• In different eras, different constituents dominate. As the Cosmos expands, the relative
importance of one constituent to another changes. Cosmologists believe that we currently live
on the far right of this graph, in the vicinity of the cross-over point from matter dominance
to dark energy dominance.

• Based on our scaling laws, we can use ratio arguments to write down the time evolution
of the densities. If ao = a(to) is the scale factor today, and ρo = ρ(to) is the density today,
then at some other time t then

ρm(t)

ρm,o
=

[

ao
a(t)

]3

→ ρm(t) = ρm,o

[

ao
a(t)

]3

ρr(t)

ρr,o
=

[

ao
a(t)

]4

→ ρr(t) = ρr,o

[

ao
a(t)

]4

• This works great, as long as you know the scale factor! As it turns out, the scale factor
is governed by a set of evolution equations derived from general relativity known as the
Friedmann Equations.
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The Friedmann Equations

• The Friedmann equations are simply the result of writing down the Einstein Field Equa-
tions for a metric known as the Friedmann-Lemaitre-Robertson-Walker metric.

• For your edification the FLRW spacetime metric is

ds2 = −c2dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

• Here the constant k is called the curvature constant. It has values k = {−1, 0,+1} and
defines the curvature of the Cosmos

• We will not do the derivation, opting instead to simply state the two Friedmann equations.
They are

[

1

a

da

dt

]2

=
8πG

3
ρ−

kc2

a2

1

a

d2a

dt2
= −

4πG

3

(

ρ+
3p

c2

)

• The first equation is often called the energy equation. With a little algebraic massage it
may be rewritten as

1

2

[

da

dt

]2

−
G

a

4πa3

3
ρ = −

kc2

2
= const

• This now just looks like the specific kinetic energy + the specific gravitational potential
energy is equal to a constant — looks like conservation of energy!

• The second equation is often called the acceleration equation. A little algebraic massage
makes this look like

d2a

dt2
= −

G

a2
4πa3

3

(

ρ+
3p

c2

)

• This now looks like the acceleration at the surface of a sphere of radius a with a uniform
density ρ+ 3p/c2

• Another common practice among cosmologists is to combine the two Friedmann equations.
Taking a page out of our fluid books, differentiating the energy equation to express d2a/dt2

in the acceleration equation leads to the fluid equation

dρ

dt
+
(

ρ+
p

c2

) 3

a

da

dt
= 0

Cosmological Models

• As observers, we are very interested in what the structure, history and ultimate fate of
the Universe is. The tools of cosmology give us the ability to address such questions, but
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ultimately we are limited by our observational capabilities. Theory has traditionally played
a strong role in cosmology by taking different conditions in the Friedmann equations, and
making predictions that can be observationally tested.

• Suppose your take our scaling laws for the densities ρ and the pressures p and put them
into the Friedmann Equations. The results are a set of expanded, fundamental equations
describing the evolution of the Cosmos as a function of what it is filled with! The fully
expanded and simplified equations are

[

1

a

da

dt

]2

=
8πG

3

{

ρm,o

[

ao
a(t)

]3

+ ρr,o

[

ao
a(t)

]4

+ ρΛ

}

−
kc2

a2

1

a

d2a

dt2
= −

4πG

3

{

ρm,o

[

ao
a(t)

]3

+ 2ρr,o

[

ao
a(t)

]4

− 2ρΛ

}

• There is very strong observational evidence that the Cosmos has k = 0 (so called flat
cosmologies). Let’s look at three different k = 0 models, specified by different choices of ρ.
Any combination of densities could be chosen, but the three models here are pure, single
component models

Model 1: de Sitter Universe: k = 0, ρm,o = ρr,o = 0 ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• This is a Universe filled with nothing except dark energy. First proposed in 1917 by
William de Sitter, it was the first cosmological model to describe an expanding Universe.

• Imposing the density and k values, the energy equation becomes

da

dt
= a

√

8πG

3
ρΛ

• This is a first order differential equation. To integrate it, we require one initial condition
(to specify the constant of integration), which is generally taken to be that the value of the
scale factor is known today, at time t = to such that ao = a(to). The solution then is

a(t) = ao exp

[

√

8πG

3
ρΛ(t− to)

]

• With a solution to a(t) we can write how the Hubble constant evolves in this cosmology

H(t) =
ȧ

a(t)
=

√

8πG

3
ρΛ

• This is constant if ρΛ = const, so H(t) = H(to) = Ho and the solution simplifies to

a(t) = ao exp [Ho(t− to)]

• Since the Cosmos has matter and radiation in it, this is not a good approximation to the
current Cosmos. However, if there is a cosmological constant, then eventually its density
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must dominate the Cosmos, and this model will accurately describe the far future of the
Universe.

Model 2: Flat Radiation Universe: k = 0, ρm,o = ρΛ = 0 ! . . . . . . . . . . . . . . . . . . . . . . . . . .

• This is a Universe filled with nothing but radiation. Given our current understanding of
the early Universe, this is a good model for the high energy era, just following the Big Bang
and inflation.

• As with the de Sitter model, our fundamental evolution equation can be found from the
energy equation

da

dt
=

a2o
a

√

8πG

3
ρr,o

• This first order equation can be integrated assuming that ao = a(to) at the current epoch
with result

a(t) = ao
√

2Hot

where

Ho =

√

8πG

3
ρr,o

Model 3: Einstein-de Sitter Universe: k = 0, ρr,o = ρΛ = 0 ! . . . . . . . . . . . . . . . . . . . . . . . .

• After the discovery of the expansion of the Universe, Einstein strongly favored a Cosmos
with ρΛ = 0, since he had introduced the cosmological constant the make static cosmological
models. In 1932, Einstein and de Sitter proposed this model (containing only matter); for
many decades it was regarded as a good model to describe the observable Universe.

• The model became less favored as observational data became better, and since the 1990’s
has been disfavored as dark energy observations have caused a resurgence in models with
ρΛ "= 0 that agree better with current data.

• In this model, the energy equation becomes

da

dt
=

a3/2o

a1/2

√

8πG

3
ρm,o

• This first order equation can be integrated assuming that ao = a(to) at the current epoch
with result

a(t) = ao

[

3

2
Hot

]2/3

where

Ho =

√

8πG

3
ρm,o
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General Cosmological Models

• Generically, the Hubble constant has the same form for each of the three cosmological
models we considered above

H(t) =

√

8πG

3
ρ(t)

• This is the generic solution for a k = 0 Universe. The value of the cosmic density defined
by this relationship is generally called the critical density ρc(t) and is given by

ρc(t) =
3H2(t)

8πG

• The physical interpretation of this density is that it is the boundary value between cosmo-
logical models that collapse (closed models) and models that expand forever (open models).
Generically, these models are defined by the value of the curvature constant k: k < 0 for
open models, and k > 0 for closed models.

• To see the connection between the critical density ρc and the curvature constant k, look
at the energy equation.

[

1

a

da

dt

]2

=
8πG

3
ρ−

kc2

a2
→ H2 =

8πG

3
ρ−

kc2

a2

• Writing H2 in terms of ρc yields

8πG

3
(ρ− ρc) =

kc2

a2
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• This shows that k = 0 cosmologies correspond to the case where ρ = ρc.

• It is common practice to work with the density parameter

Ω ≡
ρ(t)

ρc(t)
→ Ωm =

ρm
ρc

, Ωr =
ρr
ρc

, ΩΛ =
ρΛ
ρc

• We have only written down the simplest of cosmological models, with single component
densities. In more complicated models, cosmologists include more than one density compo-
nent in the model. This often makes it difficult or impossible to derive analytic results, and
numerical methods are used.
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