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We now know how to take the derivative of tensors in a way that produces another tensor, allowing us to
write equations that hold in any coordinate system (even in curved spaces). We know that scalars produced
by contracting tensors are independent of coordinates and therefore give measurable physical quantities. We
now use the covariant derivative to build a tensor that characterizes curvature.

Curvature may be defined as a measure of the infinitesimal amount a vector rotates when transported
around an infinitesmal closed loop. We begin a geometric example of this, finding the radius of a 2-sphere
using only “measurements” available from within the space. Then we will develop a precise notion of parallel
transport of a vector, i.e., a way to move a vector along a curve without explicitly rotating it. We can then
use this transport to examine the effect of moving a vector around a closed loop. This will give us a general
form for the Riemann curvature tensor.

1 Curvature of the 2-sphere
While the 2-sphere may be viewed as the surface of a sphere embeded in Euclidean 3-space, we will make use
only of distances and areas on the surface. Nonetheless, we can find the radius of the sphere, which provides
a measure of the curvature of the surface. The curvature is larger when the sphere has smaller radius, with
large spheres curving very slowly. We therefore expect the curvature to depend inversely on the radius.

We might define the curvature at a point of a 2-dimensional surface as a limit, using the observation that
the relationship between the area of a region and the length of its boundary changes if the surface is curved.
Unfortunately, this does not work For example, in the case of our 2-sphere, the surface area of the upper
half of the sphere is 2πR2, while the circumference of the equator (the boundary of the upper half-sphere)
has length 2πR. Consider the ratio of circumference to area in the limit of small loops. A circle around the
north pole at an angle of θ0 from the pole has circumference C = 2πR sin θ0 while the area enclosed may be
found by integrating

A =

2πˆ

0

Rdφ

θ0ˆ

0

R sin θdθ

= 2πR2 (1− cos θ0)

In the limit as θ0 → 0, the ratio becomes

lim
θ0→0

C

A
= lim

θ0→0

2πR sin θ0
2πR2 (1− cos θ0)

= lim
θ0→0

θ0

R
(
1−

(
1− 1

2θ
2
0

))
=

2
R

lim
θ0→0

1
θ0

which diverges. We could avoid the divergence by comparing C2 to A, but then the result would not depend
on R. We need to be more subtle.
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Instead of circumference, consider the angular deficit. A circle in flat space has a circumference of 2πR
where R is the radius of the circle and 2π the angle. If we define a circle in a small region of a curved
2-dimensional space to be the set of points at fixed distance r from a given point, then we can compute its
arc-length, s. If we parameterize the curve by an angle, where s = rϕ then that angle progresses through an
effective angle of ϕ = s

r in one complete transit. We define the anglar deficit to be the difference between
2π and this ϕ,

∆ = 2π − s

r

and we can find both s and r using the metric in the surface. Comparing the angular deficit to the area of
the surface enclosed, we get a measure of curvature,

R = lim
A→0

∆
A

= lim
A→0

2π − s
r

A

We compute this for the 2-sphere. The line element is

ds2 = R2dθ +R2 sin2 θdϕ2

For a circle around the north pole of the sphere at an angle θ0 from the pole, the radius is a line of constant
ϕ, so dϕ = 0 and

r =

θ0ˆ

0

Rdθ = Rθ0

while the arclength of the circle is given by integrating the constant θ curve,

s =

2πˆ

0

R sin θ0dϕ

= 2πR sin θ0

The angular deficit is

∆ = 2π
(

1− R sin θ0
Rθ0

)
The area is found by integrating the area element R2 sin θdθdϕ,

A =

2πˆ

0

dϕ

θ0ˆ

0

dθR2 sin θ

A = 2πR2 (1− cos θ0)

The curvature is then

R = lim
A→0

2π
(

1− 1
θ0

sin θ0
)

2πR2 (1− cos θ0)

=
1
R2

lim
θ0→0

1− 1
θ0

(
θ0 − 1

3!θ
3
0 + · · ·

)(
1−

(
1− 1

2θ
2
0 + · · ·

))
=

1
R2

lim
θ0→0

1
3!θ

2
0 + · · ·

1
2θ

2
0 + · · ·

=
1

3R2
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2 Gaussian curvature
Gauss developed a way to characterize cuvature for 2-dimensional spaces embeded in R3, and showed that
it can be computed without reference to the embedding.

We begin with a calculation that uses the embedding, but then show that we can compute the same
result without reference to anything but the metric of the surface. To begin, consider the curvature of a
curve x (λ) = (x (λ) , y (λ)) in the Euclidean plane and the parameter λ is arclength. The tangent vector to
the curve is given by n = dx

dλ . This will always be a unit vector since we choose arclength as the parameter.
The curvature of the curve is the magnitude of the rate of change of this unit normal,

κ =
∣∣∣∣dn (λ)
dλ

∣∣∣∣
Notice that since n · n = 1, differentiating shows that the rate of change of n is orthogonal to n,

n · dn
dλ

= 0

so defining the unique unit vector orthogonal to be m we have
dn
dλ

= κm

We use this notion of curvature to define the Gaussian curvature of a 2-surface.
Exercise: Prove that the curvature of a circle, x (s) =

(
R cos s

R , R sin s
R

)
is constant.

At any point, P, of a surface, S, consider the normal, n, to the surface. Choose any plane P containing
this vector. Any two such planes are related by the angle, ϕ, between them, while they intersect in the line
containing n. We may therefore label all planes containing n by ϕ, giving P (ϕ). The intersection of the
surface S with any one of these planes will be a curve, C (ϕ), lying in P (ϕ). There is a unique circle in
the plane P (ϕ) which (a) passes through P, (b) is tangent to C (ϕ), and (c) has curvature κ (ϕ) matching
C (ϕ). This is called the osculating (i.e., kissing) circle.

The curvatures of the full set of osculating circles give a bounded function, κ (ϕ) on a bounded interval,
[0, 2π]. The function therefore has a maximum and a minimum, κ1 and κ2 respectively called the principal
curvatures. The curvature of the surface is defined as the product of the principal curvatures,

R ≡ κ1κ2

We compute the Gaussian curvature of the 2-sphere. It is easy to see that for the 2-sphere, the principal
curvatures are equal to one another, since the intersection of a plane normal to the sphere always gives a
great circle. Now consider a great circle through the north pole – any curve of constant ϕ will do. In the
embedding 3-space, taking ϕ = 0, the curve is xi = (R sin θ, 0, R cos θ) =

(
R sin s

R , 0, R cos s
R

)
, where s is the

arclength. The unit tangent is therefore

n =
dxi

ds

=
(

cos
s

R
, 0,− sin

s

R

)
At the north pole, s = 0, and the tangent points in the x-direction as expected. The principle curvature,
κ1 = κ2, is given by the magnitude of

dn
ds

=
1
R

(
− sin

s

R
, 0,− cos

s

R

)
=

1
R

(
−k̂

)
so we have κ1 = κ2 = 1

R and the Gaussian curvature is

R =
1
R2

which differs by only a constant from our previous result.
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3 Parallel transport
To define a general notion of curvature for an arbitrary space, we will need to use parallel transport to
compare vectors at different positions on a manifold. As we have shown, parallel transport of a vector v
along a curve with tangent u is given by solving

uαDαv
β = 0

We will also use the example of a 2-sphere, for which the metric

gij =
(
R2 0
0 R2 sin2 θ

)
gives the connection components

Γθϕϕ = − sin θ cos θ

Γϕθϕ = Γϕϕθ =
cos θ
sin θ

and the solution for parallel transport around a curve at constant θ,

vθ (ϕ) = A cosαϕ+B sinαϕ
vϕ (ϕ) = C cosαϕ+D sinαϕ

with the frequency α given by
α = cos θ0

4 Curvature
In Section 1, we found the curvature by taking the ratio of the angular deficit to the area enclosed, in the
limit as the area shrinks to a point. However, to compute the angular deficit, we used the embedding of the
2-sphere in 3-space. This time, we will use the result of parallel transport to derive the result intrinsically,
i.e., using only the metric. The first step is to show that the angular deficit is equal to the rotation of a
parallely transported vector.

4.1 The angle of rotation produced by parallel transport
We have found the components of a general vector vi on the sphere as it is transported around a circle at
θ = θ0. After completing one full circuit, the new components are vi (2π),

vθ (2π) = vθ0 cos (2π cos θ0) + vϕ0 sin θ0 sin (2π cos θ0)

vϕ (2π) = vϕ0 cos (2π cos θ0)− vθ0
sin θ0

sin (2π cos θ0)

This is rotated from the original vector, vi (0) =
(
vθ0 , v

ϕ
0

)
by some angle β. To find the angle, compute the

inner product of vi (0) with vi (2π). Then dividing by the length of vi give the cosine of the angle between
the two vectors,

cosβ =
gijv

i (0) vj (2π)
gijvi (0) vi (0)

Recall that the length in the denomenator is unchanged by the parallel transport. It is given by

gijv
i (0) vi (0) =

(
Rvθ0

)2
+ (R sin θ0v

ϕ
0 )2
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The inner product in the numerator is

gijv
i (0) vj (2π) = R2

(
vθ0v

θ (2π) + vϕ0 v
ϕ (2π) sin2 θ0

)
= R2

(
vθ0

(
vθ0 cos (2π cos θ0) + vϕ0 sin θ0 sin (2π cos θ0)

)
+ vϕ0

(
vϕ0 cos (2π cos θ0)− vθ0

sin θ0
sin (2π cos θ0)

)
sin2 θ0

)
= R2

((
vθ0

)2
cos (2π cos θ0) + (vϕ0 )2 sin2 θ0 cos (2π cos θ0)

)
= R2

((
vθ0

)2
+ (vϕ0 )2 sin2 θ0

)
cos (2π cos θ0)

Taking the ratio, we have

cosβ =
R2

((
vθ0

)2 + (vϕ0 )2 sin2 θ0

)
cos (2π cos θ0)(

Rvθ0
)2 + (R sin θ0v

ϕ
0 )2

= cos (2π cos θ0)

so that the angle between the two vectors is β = 2π cos θ0. This means that the parallelly transported vector
has rotated through a total angle

∆ = 2π − β
= 2π (1− cos θ0)

This is the closely related to the angular deficit we found by looking at the embedding. The angular deficit
was

∆ = 2π
(

1− sin θ0
θ0

)
but if we think of sin θ0

θ0
infinitesimally, d sin θ0

dθ0
= cos θ0, the two agree. In any case, either is a valid measure

of the rotational effect of the geometry, and the use of parallel transport is intrinsic to the space considered.

4.2 The area enclosed by the loop
The area enclosed by the loop is

A = R2

ˆ 2π

0

dϕ

ˆ θ0

0

sin θdθ

= −2πR2 cos θ|θ00
= 2πR2 (1− cos θ0)

4.3 The curvature
The curvature is now given by the limit as we shrink the loop to a point,

R = lim
θ0→0

∆
A

= lim
θ0→0

2π (1− cos θ0)
2πR2 (1− cos θ0)

=
1
R2

as we found in Section 1. This time, however, we used only the metric of the 2-sphere to find the answer.
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