
Curvature singularity
We wish to show that there is a curvature singularity at r = 0 of the Schwarzschild solution. We cannot
use either of the invariantsR or RabRab since both the Ricci tensor and the Ricci scalar vanish. The next
simplest invariant is RabcdRabcd

The curvatures are given by
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Lowering the upper index,
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To compute the invariant, we will have sums including all rearrangements of the indices of the nonvanishing
terms, for example,
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So each term must be counted four times. Therefore
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so simplifying,
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which diverges strongly at r = 0, but is regular at r = 2m.

Regularity at r = 2m
It turns out that the Schwarzschild metric has only a coordinate singularity at r = 2m. A change of
coordinates removes the singular factor, 1− 2m

r . Null coordinates, u and v, such that holding either u or v
constant gives a null geodesic, turn out to not only remove the singularity, but also give a clearer picture of
the causal relationships near the star.

First, we find the null geodesics in the rt-plane. We have already shown that
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Therefore, defining

u = t+ r + 2m ln (r − 2m)
v = t− r − 2m ln (r − 2m)

we see that u = constant gives an ingoing null geodesic and v = constant gives an outgoing null geodesic.
To write the line element in terms of u and v, compute their differentials,
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This is still singular at r = 2m, but now define
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Substituting into the line element, we have
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where r = r (U, V ). There is clearly no problem at r = 2m, which is called the event horizon.

Radial infall
We now consider a particle falling into the black hole. Since the neighborhood of r = 2m is now established
to be regular, there can be nothing to keep a particle from falling across the horizon. We therefore consider
a particle falling from just inside the horizon toward the singularity.

In this region, r becomes the timelike coordinate. The geodesic equation for u0 may be written as(
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with initial value at r0 given by (
2m
r0
− 1
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Since r is now the timelike coordinate, we may choose u0
0 = 0, and therefore, k = 0, and u0 = 0 along the

entire geodesic. Then u1 is given by
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We may take the initial position to be r0 = 2m, which gives
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which is, in particular, finite.

The infall doesn’t take long for stellar sized black holes. For a black hole with 10 times the mass of the
sun, we have
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or just over an hour. For a black hole at the center of a galaxy, which may have a mass a million times as
great, the infall will take just short of two years.

The escape of light
Finally, consider light which starts near the event horizon at t = 0. How long does it take to escape from
the region of the black hole? We consider an outgoing null geodesic, which has v constant,

c = t− r − 2m ln (r − 2m)

Suppose light leaves r0 = 2m+ δ at time t = 0. Then
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Consider a black hole with 10 times the mass of the sun, so that
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The time to reach the orbit of Earth (1.5 × 1011m) from near the horizon would normally be about 500
seconds. This is increased by
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For a distance of δ = 1cm above the horizon, the time delay is
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(
1.5× 1013

)
= 2.98× 10−4 sec

so a collapsing star will appear to settle to its Schwarzschild radius extremely quickly.
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