Curvature singularity

We wish to show that there is a curvature singularity at $r=0$ of the Schwarzschild solution. We cannot use either of the invariants R or $R_{a b} R^{a b}$ since both the Ricci tensor and the Ricci scalar vanish. The next simplest invariant is $R_{a b c d} R^{a b c d}$

The curvatures are given by

$$
\begin{aligned}
& R_{010}^{1}=\frac{1}{2} \nu_{, 11} e^{\nu-\lambda}+\frac{1}{4} \nu_{, 1} \nu_{, 1} e^{\nu-\lambda}-\frac{1}{4} \nu_{, 1} \lambda,{ }_{1} e^{\nu-\lambda} \\
& R_{212}^{1}=\frac{1}{2} r \lambda_{, 1} e^{-\lambda} \\
& R_{313}^{1}=\frac{r}{2} \lambda_{, 1} e^{-\lambda} \sin ^{2} \theta \\
& R_{020}^{2}=\frac{1}{2 r} \nu_{, 1} e^{\nu-\lambda} \\
& R_{323}^{2}=\left(1-e^{-\lambda}\right) \sin ^{2} \theta \\
& R_{030}^{3}=\frac{1}{2 r} \nu, 1 e^{\nu-\lambda}
\end{aligned}
$$

where

$$
\begin{aligned}
e^{\nu} & =1-\frac{2 m}{r}=e^{-\lambda} \\
\nu_{, 1} & =\frac{2 m}{r^{2}\left(1-\frac{2 m}{r}\right)}=\frac{2 m}{r(r-2 m)} \\
\lambda_{, 1} & =-\frac{2 m}{r(r-2 m)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
R_{010}^{1} & =\frac{1}{2}\left(\nu_{, 11}+\nu_{, 1} \nu_{, 1}\right) e^{\nu-\lambda} \\
& =\frac{1}{2}\left(-\frac{4 m}{r^{3}\left(1-\frac{2 m}{r}\right)}-\frac{4 m^{2}}{r^{4}\left(1-\frac{2 m}{r}\right)^{2}}+\frac{4 m^{2}}{r^{4}\left(1-\frac{2 m}{r}\right)^{2}}\right)\left(1-\frac{2 m}{r}\right)^{2} \\
& =-\frac{2 m}{r^{3}}\left(1-\frac{2 m}{r}\right) \\
R_{212}^{1} & =-\frac{m}{r} \\
R_{313}^{1} & =-\frac{m}{r} \sin ^{2} \theta \\
R_{020}^{2} & =\frac{m}{r^{3}}\left(1-\frac{2 m}{r}\right) \\
R_{323}^{2} & =\frac{2 m}{r} \sin ^{2} \theta \\
R_{030}^{3} & =\frac{m}{r^{3}}\left(1-\frac{2 m}{r}\right)
\end{aligned}
$$

Check

$$
\begin{aligned}
R_{010}^{1} & =\frac{1}{2} \nu_{, 11} e^{\nu-\lambda}+\frac{1}{4} \nu_{, 1} \nu_{, 1} e^{\nu-\lambda}-\frac{1}{4} \nu_{, 1} \lambda_{, 1} e^{\nu-\lambda} \\
& =\frac{1}{2}\left(\nu_{, 11}+\nu_{, 1} \nu_{, 1}\right) e^{\nu-\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(-\frac{4 m}{r^{3}\left(1-\frac{2 m}{r}\right)}-\frac{4 m^{2}}{r^{4}\left(1-\frac{2 m}{r}\right)^{2}}+\frac{4 m^{2}}{r^{4}\left(1-\frac{2 m}{r}\right)^{2}}\right)\left(1-\frac{2 m}{r}\right)^{2} \\
& =-\frac{2 m}{r^{3}}\left(1-\frac{2 m}{r}\right)
\end{aligned}
$$

Lowering the upper index,

$$
\begin{aligned}
R_{1010} & =-\frac{2 m}{r^{3}} \\
R_{1212} & =-\frac{m}{r\left(1-\frac{2 m}{r}\right)} \\
R_{1313} & =-\frac{m}{r\left(1-\frac{2 m}{r}\right)} \sin ^{2} \theta \\
R_{2020} & =\frac{m}{r}\left(1-\frac{2 m}{r}\right) \\
R_{2323} & =2 m r \sin ^{2} \theta \\
R_{3030} & =\frac{m}{r}\left(1-\frac{2 m}{r}\right) \sin ^{2} \theta
\end{aligned}
$$

and raising all four indices,

$$
\begin{aligned}
R^{1010} & =-\frac{2 m}{r^{3}} \\
R^{1212} & =-\frac{m}{r^{5}}\left(1-\frac{2 m}{r}\right) \\
R^{1313} & =-\frac{m}{r^{5} \sin ^{2} \theta}\left(1-\frac{2 m}{r}\right) \\
R^{2020} & =\frac{m}{r^{5}\left(1-\frac{2 m}{r}\right)} \\
R^{2323} & =\frac{2 m}{r^{7} \sin ^{2} \theta} \\
R^{3030} & =\frac{m}{r^{5} \sin ^{2} \theta\left(1-\frac{2 m}{r}\right)}
\end{aligned}
$$

To compute the invariant, we will have sums including all rearrangements of the indices of the nonvanishing terms, for example,

$$
\begin{gathered}
R_{1212} R^{1212} \\
R_{2112} R^{2112} \\
R_{1221} R^{1221} \\
R_{2121} R^{2121}
\end{gathered}
$$

So each term must be counted four times. Therefore

$$
\begin{aligned}
R_{a b c d} R^{a b c d}= & 4\left(-\frac{2 m}{r^{3}}\right)\left(-\frac{2 m}{r^{3}}\right) \\
& +4\left(-\frac{m}{r\left(1-\frac{2 m}{r}\right)}\right)\left(-\frac{m}{r^{5}}\left(1-\frac{2 m}{r}\right)\right) \\
& +4\left(-\frac{m}{r\left(1-\frac{2 m}{r}\right)} \sin ^{2} \theta\right)\left(-\frac{m}{r^{5} \sin ^{2} \theta}\left(1-\frac{2 m}{r}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{4 m}{r}\left(1-\frac{2 m}{r}\right) \frac{m}{r^{5}\left(1-\frac{2 m}{r}\right)} \\
& +8 m r \sin ^{2} \theta \frac{2 m}{r^{7} \sin ^{2} \theta} \\
& +\frac{4 m}{r}\left(1-\frac{2 m}{r}\right) \sin ^{2} \theta \frac{m}{r^{5} \sin ^{2} \theta\left(1-\frac{2 m}{r}\right)}
\end{aligned}
$$

so simplifying,

$$
\begin{aligned}
R_{a b c d} R^{a b c d} & =-\frac{16 m^{2}}{r^{6}}+\frac{4 m^{2}}{r^{6}}+\frac{4 m^{2}}{r^{6}}+\frac{4 m^{2}}{r^{6}}+\frac{16 m^{2}}{r^{6}}+\frac{4 m^{2}}{r^{6}} \\
& =\frac{16 m^{2}}{r^{6}}
\end{aligned}
$$

which diverges strongly at $r=0$, but is regular at $r=2 m$.

Regularity at $\mathbf{r}=2 \mathrm{~m}$

It turns out that the Schwarzschild metric has only a coordinate singularity at $r=2 m$. A change of coordinates removes the singular factor, $1-\frac{2 m}{r}$. Null coordinates, u and v, such that holding either u or v constant gives a null geodesic, turn out to not only remove the singularity, but also give a clearer picture of the causal relationships near the star.

First, we find the null geodesics in the rt-plane. We have already shown that

$$
u^{0}=\frac{k}{1-\frac{2 m}{r}}
$$

and the line element then tells us that

$$
\begin{aligned}
0 & =-\left(1-\frac{2 m}{r}\right)\left(u^{0}\right)^{2}+\frac{\left(u^{1}\right)^{2}}{1-\frac{2 m}{r}} \\
& =-\frac{k^{2}}{1-\frac{2 m}{r}}+\frac{\left(u^{1}\right)^{2}}{1-\frac{2 m}{r}}
\end{aligned}
$$

so that

$$
u^{1}= \pm k
$$

Taking the quotient,

$$
\frac{d r}{d t}=\frac{u^{1}}{u^{0}}= \pm\left(1-\frac{2 m}{r}\right)
$$

and integrating,

$$
\begin{aligned}
\pm t & =\int \frac{d r}{1-\frac{2 m}{r}} \\
& =\int \frac{r d r}{r-2 m} \\
& =\int \frac{(r-2 m) d r}{r-2 m}+\int \frac{2 m d r}{r-2 m} \\
\pm t & =r+2 m \ln (r-2 m)+c
\end{aligned}
$$

Therefore, defining

$$
\begin{aligned}
& u=t+r+2 m \ln (r-2 m) \\
& v=t-r-2 m \ln (r-2 m)
\end{aligned}
$$

we see that $u=$ constant gives an ingoing null geodesic and $v=$ constant gives an outgoing null geodesic.
To write the line element in terms of u and v, compute their differentials,

$$
\begin{aligned}
d u & =d t+d r\left(1+\frac{2 m}{r-2 m}\right) \\
& =d t+\frac{d r}{1-\frac{2 m}{r}} \\
d v & =d t-\frac{d r}{1-\frac{2 m}{r}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d u d v & =d t^{2}-\frac{d r^{2}}{\left(1-\frac{2 m}{r}\right)^{2}} \\
d s^{2} & =-\left(1-\frac{2 m}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 m}{r}}+r^{2} d \Omega^{2} \\
& =-\left(1-\frac{2 m}{r}\right) d u d v+r^{2} d \Omega^{2}
\end{aligned}
$$

This is still singular at $r=2 m$, but now define

$$
\begin{aligned}
U & =e^{\frac{u}{4 m}} \\
V & =e^{-\frac{v}{4 m}}
\end{aligned}
$$

Then

$$
\begin{aligned}
d U d V & =-\frac{1}{16 m^{2}} d u d v e^{\frac{u-v}{4 m}} \\
& =-\frac{1}{16 m^{2}} d u d v e^{\frac{r}{2 m}+\ln (r-2 m)} \\
& =-\frac{r}{16 m^{2}}\left(1-\frac{2 m}{r}\right) e^{\frac{r}{2 m}} d u d v
\end{aligned}
$$

Substituting into the line element, we have

$$
d s^{2}=\frac{16 m^{2}}{r} e^{-\frac{r}{2 m}} d U d V+r^{2} d \Omega^{2}
$$

where $r=r(U, V)$. There is clearly no problem at $r=2 m$, which is called the event horizon.

Radial infall

We now consider a particle falling into the black hole. Since the neighborhood of $r=2 m$ is now established to be regular, there can be nothing to keep a particle from falling across the horizon. We therefore consider a particle falling from just inside the horizon toward the singularity.

In this region, r becomes the timelike coordinate. The geodesic equation for u^{0} may be written as

$$
\left(\frac{2 m}{r}-1\right) u^{0}=k
$$

with initial value at r_{0} given by

$$
\left(\frac{2 m}{r_{0}}-1\right) u_{0}^{0}=k
$$

Since r is now the timelike coordinate, we may choose $u_{0}^{0}=0$, and therefore, $k=0$, and $u^{0}=0$ along the entire geodesic. Then u^{1} is given by

$$
\begin{aligned}
-1 & =-\frac{1}{\left(\frac{2 m}{r}-1\right)}\left(u^{1}\right)^{2} \\
u^{1} & =\sqrt{\frac{2 m}{r}-1}
\end{aligned}
$$

Integrating,

$$
\begin{aligned}
\tau & =\int d \tau=-\int_{r_{0}}^{0} \frac{d r}{\sqrt{\frac{2 m}{r}-1}} \\
& =-\int_{r_{0}}^{0} \frac{\sqrt{r} d r}{\sqrt{2 m-r}}
\end{aligned}
$$

Letting $y=\sqrt{2 m-r}$, and therefore, $r=2 m-y^{2}$,

$$
\tau=\frac{1}{2} \int \sqrt{2 m-y^{2}} d y
$$

Now let $y=\sqrt{2 m} \sin \theta$ so that

$$
\begin{aligned}
\tau & =m \int_{r_{0}}^{0} \cos ^{2} \theta d \theta \\
& =\frac{m}{2} \int_{r_{0}}^{0}(1+\cos 2 \theta) d \theta \\
& =\left.\frac{m}{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right|_{r_{0}} ^{0} \\
& =\left.\frac{m}{2}(\theta+\sin \theta \cos \theta)\right|_{r_{0}} ^{0} \\
& =\left.\frac{m}{2}\left(\arcsin \sqrt{1-\frac{r}{2 m}}+\sqrt{1-\frac{r}{2 m}} \sqrt{\frac{r}{2 m}}\right)\right|_{r_{0}} ^{0} \\
& =\frac{m}{2}\left(\frac{\pi}{2}-\arcsin \sqrt{1-\frac{r_{0}}{2 m}}+\sqrt{1-\frac{r_{0}}{2 m}} \sqrt{\frac{r_{0}}{2 m}}\right)
\end{aligned}
$$

We may take the initial position to be $r_{0}=2 m$, which gives

$$
\tau=\frac{m \pi}{4}
$$

which is, in particular, finite.
The infall doesn't take long for stellar sized black holes. For a black hole with 10 times the mass of the sun, we have

$$
\begin{aligned}
\tau & =\frac{G M \pi}{4 c^{2}} \\
& =\frac{6.67 \times 10^{-11} \times 1.99 \times 10^{31} \times \pi}{4 \times 9 \times 10^{16}} \\
& =3690 \mathrm{sec}
\end{aligned}
$$

or just over an hour. For a black hole at the center of a galaxy, which may have a mass a million times as great, the infall will take just short of two years.

The escape of light

Finally, consider light which starts near the event horizon at $t=0$. How long does it take to escape from the region of the black hole? We consider an outgoing null geodesic, which has v constant,

$$
c=t-r-2 m \ln (r-2 m)
$$

Suppose light leaves $r_{0}=2 m+\delta$ at time $t=0$. Then

$$
c=-2 m-\delta-2 m \ln \delta
$$

and the light reaches radius r at time

$$
c t=r+2 m \ln (r-2 m)-2 m-\delta-2 m \ln \delta
$$

Compare this time to the time it would take in free space for light to travel from $2 m+\delta$ to r, given by

$$
t_{0}=\frac{r-2 m-\delta}{c}
$$

We find

$$
\begin{aligned}
\frac{t}{t_{0}} & =\frac{r+2 m \ln (r-2 m)-2 m-\delta-2 m \ln \delta}{r-2 m-\delta} \\
& =1+\frac{2 m \ln (r-2 m)-2 m \ln \delta}{r-2 m-\delta} \\
& =1+\frac{2 m}{r-2 m-\delta} \ln \frac{r-2 m}{\delta}
\end{aligned}
$$

Consider a black hole with 10 times the mass of the sun, so that

$$
2 m=\frac{2 G M}{c^{2}}=2950 m
$$

The time to reach the orbit of Earth $\left(1.5 \times 10^{11} \mathrm{~m}\right)$ from near the horizon would normally be about 500 seconds. This is increased by

$$
\begin{aligned}
\Delta t & =500 \times \frac{2 m}{r-2 m-\delta} \ln \frac{r-2 m}{\delta} \\
& =500 \times \frac{2950}{1.5 \times 10^{11}} \ln \frac{1.5 \times 10^{11}}{\delta} \\
& =9.83 \times 10^{-6} \ln \frac{1.5 \times 10^{11}}{\delta}
\end{aligned}
$$

For a distance of $\delta=1 \mathrm{~cm}$ above the horizon, the time delay is

$$
\begin{aligned}
\Delta t & =9.83 \times 10^{-6} \ln \left(1.5 \times 10^{13}\right) \\
& =2.98 \times 10^{-4} \mathrm{sec}
\end{aligned}
$$

so a collapsing star will appear to settle to its Schwarzschild radius extremely quickly.

