
Radial geodesics in Schwarzschild spacetime
Spherically symmetric solutions to the Einstein equation take the form

ds2 = −
(

1 +
a

r

)
dt2 +

dr2

1 + a
r

+ r2dθ2 + r2 sin2 θdϕ2

where a is constant.
We also have the connection components, which now take the form (using eν = e−λ = 1+ a

r , and therefore
ν = ln

(
1 + a

r

)
and ν,1 = − a

r2 e
−ν

Γ0
00 = 0

Γ0
01 = Γ0

10 = − a

2r2
(
1 + a

r

)
Γ1

00 = −1
2

(
1 +

a

r

) a

r2

Γ1
11 =

a

2r2
(
1 + a

r

)
Γ1

01 = Γ1
10 = 0

Γ0
11 = 0

Γ2
12 = Γ2

21 =
1
r

Γ1
22 = −r

(
1 +

a

r

)
Γ3

13 = Γ3
31 =

1
r

Γ1
33 = −

(
1 +

a

r

)
r sin2 θ

Γ3
23 = Γ3

32 =
cos θ
sin θ

Γ2
33 = − sin θ cos θ

Now consider the geodesic equation for a particle which starts from rest at time τ = t = 0.

0 =
dua

dτ
+ Γabcu

buc

It might seem that the initial velocity 4-vector is ua = (1, 0, 0, 0), but this is not allowed. Using the line
element, ds2 = −dτ2, we must have

−1 = −
(

1 +
a

r

)( dt
dτ

)2

+
1

c2
(
1 + a

r

) (dr
dτ

)2

+
r2

c2

(
dθ

dτ

)2

+
r2

c2
sin2 θ

(
dϕ

dτ

)2

where c is the speed of light. If there is no initial motion in the spatial directions we must have

u0
0 =

(
dt

dτ

)
0

=
1√

1 + a
r0

where r0 is the initial radial position.
The geodesic equation for each component is then (at the initial time),

0 =
1
c

du0

dτ
+ 2Γ0

01u
0u1
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0 =
1
c

du1

dτ
+ Γ1

00u
0u0 + Γ1

11u
1u1 + Γ1

22u
2u2 + Γ1

33u
3u3

0 =
1
c

du2

dτ
+ 2Γ2

21u
2u1 + Γ2

33u
3u3

0 =
1
c

du3

dτ
+ 2Γ3

13u
1u3 + Γ3

23u
2u3

Notice that if u2 = 0 or u3 = 0 then the corresponding accelerations also vanish, so they remain zero.
However, u1 cannot remain zero.

For radial motion, substituting for the connection coefficients, we therefore have

0 =
1
c

du0

dτ
− a

r2
(
1 + a

r

)u0u1

0 =
1
c

du1

dτ
−
(

1 +
a

r

) a

2r2
u0u0 +

a

2r2
(
1 + a

r

)u1u1

We also have the relation given by the line element,

−1 = −
(

1 +
a

r

)( dt
dτ

)2

+
1

1 + a
r

(
1
c

dr

dτ

)2

First equation
Integrate the first equation,

0 =
du0

u0
− adr

r2
(
1 + a

r

)
= lnu0 −

ˆ
adr

r (r + a)

= lnu0 −
ˆ (

1
r
− 1
r + a

)
dr

= lnu0 − ln r + ln (r + a)− ln b

for some constant b, and therefore (
1 +

a

r

)
u0 = b

Evaluating at the initial condition, we see that b =
√

1 + a
r0
.

Radial component of velocity from the line element
Now substitute into the line element equation to find u1,

−1 = −
(

1 +
a

r

) (
u0
)2

+
1

1 + a
r

(
u1
)2

−1 = −
(

1 +
a

r

)( b

1 + a
r

)2

+
1

1 + a
r

(
u1
)2

(
u1
)2

= b2 −
(

1 +
a

r

)
u1 =

√
b2 −

(
1 +

a

r

)
=

√
a

r0
− a

r
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Now integrate to find r (τ),

cτ =
ˆ

dr√
a
r0
− a

r

=
1√
a

ˆ √
rdr√
r
r0
− 1

Let y =
√
r. Then dy = 1

2
dr√
r
, so

cτ =
2√
a

ˆ
y2dy√
y2

r0
− 1

Now let y =
√
r0 cosh ξ so that

cτ =
2√
a

ˆ
r0 cosh2 ξ

√
r0 sinh ξdξ

sinh ξ

=
2 (r0)3/2√

a

ˆ
cosh2 ξdξ

=
(r0)3/2√

a

ˆ (
cosh2 ξ + 1 + sinh2 ξ

)
dξ

=
(r0)3/2√

a

ˆ
(cosh 2ξ + 1) dξ

=
(r0)3/2√

a

(
1
2

sinh 2ξ + ξ

)
=

(r0)3/2√
a

(
sinh ξ cosh ξ + cosh−1

√
r

r0

)
=

(r0)3/2√
a

(√
r

r0

√
r

r0
− 1 + cosh−1

√
r

r0

)
=
√
r0√
a
r +

(r0)3/2√
a

cosh−1

√
r

r0

Second equation
We can also get this result from the second equation,

0 =
1
c

du1

dτ
−
(

1 +
a

r

) a

2r2
u0u0 +

a

2r2
(
1 + a

r

)u1u1

Substituting for u0,

0 =
1
c

du1

dτ
− 1

2r2
ab2

1 + a
r

+
a

2r2
(
1 + a

r

)u1u1

1
c

du1

dτ
=

1
r2

a

1 + a
r

(
1
2
b2 − 1

2
u1u1

)
Then, bringing the u1 dependent factor to the left and multiplying both sides by u1 = 1

c
dr
dτ ,

u1du1

1
2b

2 − 1
2u

1u1
=

1
r2

a

1 + a
r

dr
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we can integrate,
ˆ

u1du1

b2 − 1
2u

1u1
= ln r − ln (r + a)

ln r − ln (r + a) =
ˆ

u1du1

1
2b

2 − 1
2u

1u1

=
ˆ

dy

b2 − y
= − ln

(
b2 − y

)
+ ln d

Therefore,

b2 − y
1 + a

r

= d

y =
(
u1
)2

= b2 − d
(

1 +
a

r

)
Comparing to the previous result, u1 =

√
b2 −

(
1 + a

r

)
we see that the results agree provided d = 1.

Solution to lowest order
To lowest order in r0

r , the components of the velocity are

u0 =
b

1 + a
r

=
(

1 +
a

2r0

)(
1− a

r

)
= 1 +

a

2r0
− a

r
= 1

which gives t = τ and

u1 =
√

a

r0
− a

r

Notice that the Newtonian acceleration in the r direction agrees with the lowest order limit if we fix the
value of the constant a,

−GM
r2c2

=
1
c2
d2r

dt2

=
1
c

du1

dτ

=
1

2r2
a

1 + a
r

(
b2 − u1u1

)
≈ a

2r2

(
1 +

a

r0
−
(
a

r0
− a

r

))
≈ a

2r2
a

2r2
= −GM

r2c2

a = −2GM
c2
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This finally establishes the Schwarzschild line element,

ds2 = −
(

1− 2GM
rc2

)
dt2 +

dr2

1− 2GM
rc2

+ r2dθ2 + r2 sin2 θdϕ2

Orbits

The Kepler problem
For comparison, we first compute the orbits in Newtonian gravity. We start from the conservation laws.
Since the velocity is

~v = ṙr̂ + rθ̇θ̂ + r sin θϕ̇ϕ̂

the angular momentum is
−→
L = −→r ×−→p

= m−→r ×
(
ṙr̂ + rθ̇θ̂ + r sin θϕ̇ϕ̂

)
= mrθ̇−→r × θ̂ +mr sin θϕ̇−→r × ϕ̂

Since this is conserved in both magnitude and direction, the orbit remains in the plane perpendicular to −→L .
Without loss of generality, we may take the orbit to lie in the θ = π

2 plane, so that
−→
L = mr2ϕ̇k̂

~v = ṙr̂ + rϕ̇ϕ̂

The energy is also conserved,

E =
1
2
m
(
ṙ2 + r2ϕ̇2

)
− GMm

r

Define the angular momentum per unit mass, l = r2ϕ̇ and the energy per unit mass, E = E
m . Then we have

ϕ̇ = l
r2 so that

E =
1
2

(
ṙ2 +

l2

r2

)
− GM

r

ṙ =

√
2E − l2

r2
+

2GM
r

To find an equation for the orbit, r (ϕ), divide by ϕ̇ = l
r2 and integrate:

ϕ =
ˆ

ldr

r2
√

2E − l2

r2 + 2GM
r

Now set u = 1
r so that

ϕ =
ˆ

−ldu√
2E − l2u2 + 2GMu

=
ˆ

−ldu√
−
(
GM
l − lu

)2
+ 2E + G2M2

l2

Let

y =
GM

l
− lu

A2 = 2E +
G2M2

l2
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so that
ϕ =
ˆ

dy√
−y2 +A2

so with y = A sin θ we have

ϕ =
ˆ
A cos θdθ
A cos θ

= θ

= arcsin
( y
A

)
Solving for r we have,

A sinϕ = y

=
GM

l
− lu

=
GM

l
− l

r

so

1
r

=
GM

l2
− A

l
sinϕ

r =
l2

GM

1−
√

1 + 2l2E
G2M2 sinϕ

To see that this describes an ellipse, let

r =
a

1− e sinϕ

Then, changing to Cartesian coordinates,

r − er sinϕ = a

r − ey = a

r2 = a2 + 2eay + e2y2

x2 + y2 = a2 + 2eay + e2y2

x2 + y2 − 2eay − ey2 = a2

x2 + (1− e)
(
y − ea

1− e

)2

= a2

(
1 +

e2

1− e

)
Finally, setting y0 = ea

1−e , b = a2
(

1 + e2

1−e

)
and c2 = b2

1−e we have the standard form for an ellipse centered
at (x, y) = (0, y0):

x2

b2
+

(y − y0)2

c2
= 1

An examination of the magnitudes of the constants shows that this solution is valid for bound states, with
E < 0. For positive energy, the final integral gives a hyperbolic function and the equation describes a
hyperbola.

Now consider the orbits described by general relativity.
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Geodesic orbits
The geodesic equations are:

0 =
1
c

du0

dτ
− a

r2
(
1 + a

r

)u0u1

0 =
1
c

du1

dτ
−
(

1 +
a

r

) a

2r2
u0u0 +

a

2r2
(
1 + a

r

)u1u1 − r
(

1 +
a

r

)
u2u2 −

(
1 +

a

r

)
r sin2 θu3u3

0 =
1
c

du2

dτ
− sin θ cos θu3u3 +

2
r
u2u1

0 =
1
c

du3

dτ
+

2 cos θ
sin θ

u2u3 +
2
r
u3u1

We also have the relation given by the line element,

ds2

dτ2
= −

(
1 +

a

r

)( dt
dτ

)2

+
1

c2
(
1 + a

r

) (dr
dτ

)2

+
r2

c2

(
dθ

dτ

)2

+
r2

c2
sin2 θ

(
dϕ

dτ

)2

Because of the spherical symmetry, orbits will remain in a plane, as seen by choosing initial conditions with
θ = π

2 and u2 (0) = 0. Then the geodesic equations become

0 =
1
c

du0

dτ
− a

r2
(
1 + a

r

)u0u1

0 =
1
c

du1

dτ
−
(

1 +
a

r

) a

2r2
u0u0 +

a

2r2
(
1 + a

r

)u1u1 −
(

1 +
a

r

)
ru3u3

0 =
1
c

du2

dτ

0 =
1
c

du3

dτ
+

2
r
u3u1

so that u2 remains zero. We may integrate the ϕ equation immediately,

du3

u3
= −2

r
dr

u3 =
l0
r2

r2
dϕ

dτ
= l0

which simply states conservation of angular momentum.
We also have the same result for u0 as we did for radial geodesics,(

1 +
a

r

)
u0 = b

though b differs. How we proceed depends on the type of orbit we desire.

Timelike orbits and perihelion advance

We can compute u1 from the line element for a timelike orbit, ds
2

dτ2 = −1,

−1 = − b2

1 + a
r

+
1

c2
(
1 + a

r

) (dr
dτ

)2

+
l20
r2c2
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−1− a

r
= −b2 +

1
c2

(
dr

dτ

)2

+
l20
r2c2

(
1 +

a

r

)
1
c2

(
dr

dτ

)2

= b2 − 1− a

r
− l20
r2c2

(
1 +

a

r

)
To find b let t = τ = 0 when dr

dτ = 0. Then

−1 = − b2

1 + a
r0

+
l20
r20c

2

b2 =
(

1 +
l20
r20c

2

)(
1− 2GM

r0c2

)
b =

√
1 +

l20
r20c

2
− 2GM

r0c2
− 2GMl20

r30c
4

so that with this value for b and a = − 2GM
c2 we have(

dr

dτ

)2

= −2GM
r0

+
2GM
r

+
l20
r20

(
1− 2GM

r0c2

)
− l20
r2

(
1− 2GM

rc2

)
We find the equation for the orbit by dividing by

(
u3
)2 = l20

r4 ,(
dr

dϕ

)2

= r4
(
−2GM
r0l20

+
2GM
rl20

+
1
r20

(
1− 2GM

r0c2

)
− 1
r2

(
1− 2GM

rc2

))
dϕ =

dr

r2
√
− 2GM

r0l20
+ 2GM

rl20
+ 1

r20

(
1− 2GM

r0c2

)
− 1

r2

(
1− 2GM

rc2

)
In terms of u = 1

r this becomes

dϕ =
− 1
u2u

2du√
− 2GMu0

l20
+ 2GM

l20
u+ u2

0

(
1− 2GM

c2 u0

)
− u2

(
1− 2GMu

c2

)
(
du

dϕ

)2

=
(
u2

0

(
1− 2GM

c2
u0

)
− 2GMu0

l20

)
+

2GM
l20

u− u2 +
2GMu3

c2

which is the usual equation for an ellipse except for the last term.
Make the definitions

u′ =
du

dϕ

a = u2
0

(
1− 2GM

c2
u0

)
− 2GMu0

l20

b =
2GM
l20

c =
2GM
c2

Then we have
(u′)2 = a+ bu− u2 + cu3
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or
dϕ =

−du√
a+ bu− u2 + cu3

This agrees with the Kepler result, except for the last, cubic term in the denominator, which is very small
for ordinary stars or planets.

If we integrate this about half of one orbit without the cubic term, we just get π. Multiplying by 2 we
get a complete circuit, that is,

2π = −2

u+ˆ

u−

du√
a+ bu− u2

where u± are the extremes of the orbit. The perihelion advance is the difference between this integral and
2π,

∆ϕ = 2π − 2

u+ˆ

u−

du√
a+ bu− u2 + cu3

Unfortunately, estimating this straightforwardly involves an elliptic integral. I haven’t found any way to do
it simpler than Weinberg’s calculation in Gravitation and Cosmology. I won’t repeat his calculation here.

The result for the perihelion advance of Mercury is about 43 seconds of arc per century, in excellent
agreement with the experimental result.

Null geodesics

Now return to the solution for the geodesic, but consider the null case, ds
2

dτ2 = 0. Then we still have

(
1 +

a

r

)
u0 = b =

√
1− 2m

r0

r2
dϕ

dτ
= l0 = r0c

where r0 is the radius of closest approach. But now we have

0 = −
(

1 +
a

r

)( dt
dτ

)2

+
1

c2
(
1 + a

r

) (dr
dτ

)2

+
r2

c2

(
dθ

dτ

)2

+
r2

c2
sin2 θ

(
dϕ

dτ

)2

0 = − b2

1 + a
r

+
1

c2
(
1 + a

r

) (dr
dτ

)2

+
l20
r2c2

Therefore, with a = − 2m
r (

dr

dτ

)2

= b2c2 − c2r20
r2

(
1− 2m

r

)
At the radius of closest approach, this becomes

0 = b2c2 − l20
r20

(
1− 2m

r0

)
0 = b2 −

(
1− 2m

r0

)
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The procedure is the same. We convert to an equation relating r and ϕ. Setting A = bc
l0

= 1
r0

√
1− 2m

r0
, this

leads to

dr
dτ
dϕ
dτ

=
r2

r0c

√
b2c2 − l20

r2

(
1− 2m

r

)
dϕ =

dr

r2

r0c

√
b2c2 − l20

r2

(
1− 2m

r

)
=

dr

r

√
r2

r20
b2 − l20

r20c
2

(
1− 2m

r

)
=

dr

r
√

r2

r20
− 1 + 2m

r −
r2

r20

2m
r0

=
dr

r
√

r2

r20
− 1

√
1 + 2m

r0

r3
0
r3
−1

1−
r2
0
r2

The total change in angle twice the integral from infinity to r0. No deviation corresponds to a change in ϕ
of π, so

∆ϕ = −π + 2
ˆ

dr

r
√

r2

r20
− 1

√
1 + 2m

r0

r3
0
r3
−1

1−
r2
0
r2

Now expand the second square root in powers of mr0 � 1 and substitute r0
r = sin θ,

∆ϕ = −π + 2
ˆ

dr

r
√

r2

r20
− 1

(
1 +

m

r0

(
1− r30

r3

)(
1− r20

r2

)−1

+O
(
m2

r20

))

= −π − 2
ˆ

r0dr

r2
√

1− r20
r2

(
1 +

m

r0

(
1− r30

r3

)(
1− r20

r2

)−1
)

= −π + 2
ˆ π

2

0

dθ

(
1 +

m

r0

(
1− sin3 θ

) (
1− sin2 θ

)−1
)

= −π + 2
ˆ π

2

0

dθ

(
1 +

m

r0

(
1 + sin θ + sin2 θ

)
(1 + sin θ)−1

)
=

2m
r0

(1 + sin θ)−1

(
cos

θ

2
+ sin

θ

2

)(
cos

θ

2
cos θ + (cos θ − 2) sin

θ

2

)∣∣∣∣π2
0

=
2m
2r0

(√
2
) 1√

2
(−2)− 2m

r0

= −4m
r0

The integral was easily handled by the Wolfram online integrator.
For the sun,

4m
r0

=
4GM
R

=
4× 6.67× 10−11 × 1.99× 1030

6.96× 108
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= 8.476× 10−6rad× 57.2957deg/rad× 1
3600

sec/deg

= 1.748 sec

so light is deflected by 1.75 seconds of arc. This is confirmed by experiment.
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