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1 Isotropic, homogeneous 3-spaces
The basic assumption for cosmology, based on considerable experimental evidence, is that there exist homo-
geneous, isotropic spatial hypersurfaces. The metric for spacetime must then take the form

ds2 = −dt2 + a (t)2
hijdx

idxj

where hij is any homogeneous, isotropic 3-metric.
In order to be isotropic about a point r = 0, a spatial 3-metric must take the form of a 2-sphere, together

with arbitrary radial part,
dl2 = f (r)2

dr2 + r2dθ2 + r2 sin2 θdϕ2

and homogeneity then requires the corresponding curvature (or any curvature scalar) to be constant. If
we compute the curvature in an orthonormal frame field, ei, then all components of the curvature must be
equal. An orthonormal frame is given by

er = fdr

eθ = rdθ

eϕ = r sin θdϕ

The connection and curvature are given by

dei = ej ∧ ωi
j

Ri
j = dωi

j − ωk
j ∧ ωi

k

To solve for the spin connection, ωi
j , we have the three equations

der = eθ ∧ ωr
θ + eϕ ∧ ωr

ϕ

deθ = er ∧ ωθ
r + eϕ ∧ ωθ

ϕ

deϕ = er ∧ ωϕ
r + eθ ∧ ωϕ

θ

Substituting for the basis forms, these become

0 = rdθ ∧ ωr
θ + eϕ ∧ ωr

ϕ

dr ∧ dθ = fdr ∧ ωθ
r + eϕ ∧ ωθ

ϕ

sin θdr ∧ dϕ+ r cos θdθ ∧ dϕ = fdr ∧ ωϕ
r + rdθ ∧ ωϕ

θ

Matching terms we see that we can solve the second by setting

ωθ
r =

1
f
dθ
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and the third with

ωϕ
r =

1
f

sin θdϕ

ωϕ
θ = cos θdϕ

and using the antisymmetry ωθ
ϕ = −ωϕ

θ, ωr
θ = −ωθ

r, and ωr
ϕ = −ωϕ

r, we see that all three equations are
satisfied.

Now compute the curvature 2-forms,

Ri
j = dωi

j − ωk
j ∧ ωi

k

We have

Rr
θ = dωr

θ − ωk
θ ∧ ωr

k

= d
(
− 1
f
dθ
)
− ωϕ

θ ∧ ωr
ϕ

=
f ′

f2
dr ∧ dθ − (cos θdϕ) ∧

(
− 1
f

sin θdϕ
)

=
f ′

rf3
er ∧ eθ

and

Rr
ϕ = dωr

ϕ − ωk
ϕ ∧ ωr

k

= d
(
− 1
f

sin θdϕ
)
− ωθ

ϕ ∧ ωr
θ

=
f ′

f2
sin θdr ∧ dϕ− 1

f
cos θdθ ∧ dϕ− (− cos θdϕ) ∧

(
− 1
f
dθ
)

=
f ′

f2
sin θdr ∧ dϕ− 1

f
cos θdθ ∧ dϕ− 1

f
cos θdϕ ∧ dθ

=
f ′

rf3
er ∧ eϕ

and finally

Rθ
ϕ = dωθ

ϕ − ωk
ϕ ∧ ωθ

k

= d (− cos θdϕ)− ωr
ϕ ∧ ωθ

r

= sin θdθ ∧ dϕ−
(
− 1
f

sin θdϕ
)
∧
(

1
f
dθ
)

=
(

1− 1
f2

)
sin θdθ ∧ dϕ

=
1
r2

(
1− 1

f2

)
eθ ∧ eϕ

so the curvature components are

Rrθrθ =
f ′

rf3

Rrϕrϕ =
f ′

rf3

Rθϕθϕ =
1
r2

(
1− 1

f2

)
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Since we are in an orthonormal frame, these must all be equal. Therefore,

f ′

rf3
=

1
r2

(
1− 1

f2

)
ˆ f

f0

df

f (f2 − 1)
=
ˆ r

r0

1
r
dr

ˆ f

f0

df

(
− 1
f

+
1

2 (f − 1)
+

1
2 (f + 1)

)
= ln

r

r0

− ln
f

f0
+

1
2

ln
f2 − 1
f2

0 − 1
= ln

r

r0

f2
0

f2

f2 − 1
f2

0 − 1
=

r2

r2
0

f2

(
1− f2

0 − 1
r2
0f

2
0

r2

)
= 1

Let κ = f2
0−1

r2
0f

2
0
, noticing that κ may be any real number, positive or negative. Then the only homogeneous,

isotropic 3-metrics may be put in the form

ds2 =
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdϕ2

Rescaling s and r by an arbitrary factor, the only effect is to change the value of κ by the square of that
factor. This means that we can scale the r coordinate so that κ = ±1 or κ = 0, with the zero case giving
flat space. For κ = ±1, the curvature scalar is full curvature tensor is proportional to

f ′

rf3
=

1
r2

(
1− 1

f

)
=

1
r2

(
1−

(
1− κr2

))
= κ

Indeed, the entire curvature tensor may be written in terms of this single constant as

Rij kl = κ
(
δikδ

j
l − δ

i
lδ
j
k

)
or, lowering an index,

Rijkl = κ
(
δikhjl − δilhjk

)
Notice that we have spaces of both constant negative curvature and constant positive curvature.

Finally, note that the change of coordinate,

r = sinχ

for κ = 1 or
r = sinhχ

for κ = −1 puts the line element in the more obviously hyperspherical form

ds2 = dχ2 + sinχ2dθ2 + sinχ2 sin2 θdϕ2

or negative curvature form
ds2 = dχ2 + sinhχ2dθ2 + sinhχ2 sin2 θdϕ2
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2 Spacetime cosmological curvature
We may now write the metric for a cosmological model as

ds2 = −dt2 + a2

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdϕ2

)
= −dt2 + a2hijdx

idxj

where κ = 0,±1, i, j = 1, 2, 3, and a = a (t) sets the cosmic distance scale at any given time.
The connection is easily found,

−Γ0ij = Γi0j = Γij0 = aȧhij

Γijk = a2Γ̃ijk

where Γ̃ijk is the connection found above for the maximally symmetric metric, hij . Therefore,

Γi0j = Γij0 =
ȧ

a
δij

Γ0
ij = aȧhij

Γijk = Γ̃ijk

The curvature can also be written in terms of maximally symmetric parts, and parts depending on a (t).

Rijkl = Γijl,k − Γijk,l − ΓiblΓ
b
jk + ΓibkΓbjl

= R̃ijkl − Γi0lΓ
0
jk + Γi0kΓ0

jl

= R̃ijkl + ȧ2
(
δikhjl − δilhjk

)
and replacing R̃ijkl with the expression above for the maximally symmetric curvature,

Rijkl =
(
κ+ ȧ2

) (
δikhjl − δilhjk

)
Next, consider

R0
jkl = Γ0

jl,k − Γ0
jk,l − Γ0

blΓ
b
jk + Γ0

bkΓbjl
This must be proportional to some rank-3 tensor in the maximally symmetric space, but there is none so we
expect these components to vanish. Indeed, we find

R0
jkl = aȧhjl,k − aȧhjk,l − aȧhmlΓ̃mjk + aȧhmlΓ̃mjk

= aȧ
(
hjl,k − hmlΓ̃mjk − hjmΓ̃mlk − hjk,l + hmlΓ̃mjk + hjmΓ̃mkl

)
+hjmΓ̃mlk − hjmΓ̃mkl

= aȧ (hjl;k − hjk;l)
= 0

where the derivatives of hij in the penultimate step are with respect to the maximally symmetric connection.
Since hij is the metric compatible with this connection, the derivatives vanish.

The final components are

R0
j0l = Γ0

jl,0 − Γ0
j0,l − Γ0

blΓ
b
j0 + Γ0

b0Γbjl
= Γ0

jl,0 − Γ0
blΓ

b
j0

=
(
aä+ ȧ2

)
hjl − aȧhml

ȧ

a
δmj

= aähjl
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Collecting terms, we have

R0
j0l = aähjl

Rijkl =
(
κ+ ȧ2

) (
δikhjl − δilhjk

)
and terms related to these by symmetry.

The Ricci tensor follows immediately,

R00 = Ri0i0

= − 1
a2
hijR0

j0i

= − 1
a2
hijaähji

= −3ä
a

and

Rij = R0
i0j +Rmimj

= aähij +
(
κ+ ȧ2

)
(δmmhij − δmi hmj)

=
(
aä+ 2κ+ 2ȧ2

)
hij

and the Ricci scalar is

R = g00R00 +
1
a2
hijRij

=
3ä
a

+
3
a2

(
aä+ 2κ+ 2ȧ2

)
=

6ä
a

+
6
a2

(
κ+ ȧ2

)
Finally, we have the components of the Einstein tensor,

G00 = R00 −
1
2
g00R

= −3ä
a

+
3ä
a

+
3
a2

(
κ+ ȧ2

)
=

3
a2

(
κ+ ȧ2

)
and

Gij = Rij −
1
2
gijR

=
(
aä+ 2κ+ 2ȧ2

)
hij −

1
2
a2hij

(
6ä
a

+
6
a2

(
κ+ ȧ2

))
=

(
aä+ 2κ+ 2ȧ2 − 3aä− 3

(
κ+ ȧ2

))
hij

= −
(
2aä+ κ+ ȧ2

)
hij

3 The stress-energy tensor
We consider the stress-energy tensor of a perfect, isotropic fluid,

T ab = (ρ+ p)uaub + pgab
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Here the pressure must be the same in all directions. The 4-velocity ua = (1, 0, 0, 0) is tangent to the
co-moving geodesics, ua;bu

b = 0.
The conservation equation now gives

0 = T ab ;b

= (ρ+ p),b u
aub + (ρ+ p)

(
ua;bu

b + uaub ;b

)
+ p;bg

ab

= ua
d

dτ
(ρ+ p) + (ρ+ p)uaub ;b + gab

∂p

∂xb

Since ρ and p only depend on t, this reduces to

0 = u0 (ρ̇+ ṗ) + (ρ+ p)u0ub ;b + g00 ∂p

∂t

= ρ̇+ ṗ+ (ρ+ p)ub ;b − ṗ

where, setting h = dethij , the divergence of ua is given by

ub ;b =
1√
−g

∂b
(√
−gub

)
=

1
a3h

∂b
(
ha3ub

)
=

1
a3
∂0

(
a3u0

)
=

3ȧ
a

Therefore,

0 =
dρ

dτ
+ (ρ+ p)ub ;b

= ρ̇+ (ρ+ p)
(

3ȧ
a

)
To complete the condition, we require an equation of state relating ρ and p. There are two relevant cases.
At the present era, with the universe filled with chunks of massive stuff, the pressure is negligible and we
may set p = 0. Then integrating,

ρa3 = const.

which simply says that in a volume a3 (t) there is a constant amount of mass. For simplicity, define the
constant to be m, so we have

m ≡ ρa3

T 00 ≡ ρ

=
m

a3 (t)

The second relevant equation of state is that of radiation. This applies in the early universe when radiation
fields were substantial and particle energies were so high that the energy and momentum are approximately
equal, E =

√
p2 +m2 ≈ |p|. In this case

ρ =
1
3
p

and integration leads to

ρa4 = const.

In this case (even though ρ is clearly no longer a mass density), we still call the constant m, and we have

T 00 =
m

a4
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The Einstein equation
We may now write the Einstein equation, including a possible cosmological constant, Λ,

Gab + Λgab = βTab

where β = 8πG
c4 . Then for the 00 component,

G00 + Λg00 = βT00

3
a2

(
κ+ ȧ2

)
− Λ =

βm

a3

while the spatial components give a second equation,

Gij + Λgij = 0
−
(
2aä+ κ+ ȧ2 − Λa2

)
hij = 0

These two equations are not independent, but are related by the Bianchi identity. To see this, multiply
the 00 equation by a2 and differentiate with respect to time,

3
(
κ+ ȧ2

)
− Λa2 =

βm

a

6ȧä− 2Λaȧ = −βm
a

ȧ

a

Substituting the original equation for βm
a and simplifying,

6ȧä− 2Λaȧ = − ȧ
a

(
3
(
κ+ ȧ2

)
− Λa2

)
6ä− 2Λa = −3

a

(
κ+ ȧ2

)
+ Λa

and therefore, multiplying by a
3 ,

2aä− Λa2 + κ+ ȧ2 = 0

reproducing the spatial equation.
We have therefore reduced this cosmological model to the conservation law together with a single equation,

called the Friedmann equation,
3a
(
κ+ ȧ2

)
− Λa3 − βm = 0

Curvature singularity
The metric appears to be degenerate if a = 0 or if a diverges. If we look at the scalar curvature,

R =
6ä
a

+
6
a2

(
κ+ ȧ2

)
we see that the first of these, a = 0, is also a curvature singularity. The field equations,

2aä+ κ+ ȧ2 − Λa2 = 0
3
a2

(
κ+ ȧ2

)
− Λ− βm

a3
= 0
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allow us to rewrite κ+ ȧ2 and the acceleration in terms of a,

κ+ ȧ2 =
a2

3

(
Λ +

βm

a3

)
ä =

1
2a
(
Λa2 −

(
κ+ ȧ2

))
=

1
3

Λa− βm

6a2

so the scalar curvature becomes,

R =
6ä
a

+
6
a2

(
κ+ ȧ2

)
=

6
a

(
1
3

Λa− βm

6a2

)
+ 2

(
Λ +

βm

a3

)
= 4Λ +

βm

a3

which diverges if and only if a = 0.
It is not hard to show that other curvature invariants also diverge at a = 0, and nowhere else.

Properties of the Friedmann equation
Consider the Firedmann equation,

3aκ+ 3aȧ2 − Λa3 − βm = 0

Even without integrating this, we can analyze the possible histories it describes. Dividing by 8πa3, we write
it in terms of the Hubble parameter,

3κ
8πa2

+
3ȧ2

8πa2
− 1

8π
Λ− m

a3
= 0

3
8πa2

κ+
3H2

8π
− 1

8π
Λ− ρm = 0

Solve for the curvature constant term,

3
8πa2

κ = −3H2

8π
+ ρm +

1
8π

Λ

and think of each term as a density,

ρΛ =
1

8π
Λ

ρC =
3H2

8π

where ρC is called the critical density. Then

3
8πa2

κ = −ρC + ρm + ρΛ

If the current density of matter, including the effective matter density of the cosmological constant, ρm + ρΛ

exceeds the critical density, then the right side is positive and we must have κ = 1. The universe is then
closed and we expect it to recollapse.

On the other hand, if ρm + ρΛ is less than the critical density, κ must be negative and the spatial
hypersurfaces are open.
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As the universe expands, two of the terms become smaller,

lim
a→∞

3
8πa2

κ = 0

lim
a→∞

ρm = 0

so in the late-time limit

H2 =
ȧ2

a2
=

1
3

Λ

a (t) = a0e
ut

u =

√
Λ
3

The expansion becomes exponential with a rate governed by the cosmological constant. This is faster than
the rate without cosmological constant. For example, with flat spacelike hypersurfaces, κ = 0, and no
cosmological constant, we have

3ȧ2

8πa2
=

m

a3

ȧ =

√
8πm
3a

√
ada =

√
8πm

3
(t− t0)

a3/2 − a3/2
0 =

√
8πm

3
(t− t0)

a =

(
a

3/2
0 +

√
8πm

3
(t− t0)

)2/3

Asymptotically, this gives a simple power law,

a =
(

8πm
3

)1/3

t2/3

Since κ is, in fact, close to zero, while at the present time ρm is much larger than ρΛ, the rate of expansion is
close to this power law. But as the universe continues to expand and ρm becomes negligible, the cosmological
constant will lead to an exponential expansion, causing the expansion to speed up.

Properties of the Friedmann equation
We now examine the Friedmann equation,

3a
(
κ+ ȧ2

)
− Λa3 − βm = 0

Solving for ȧ,

ȧ = ±
√

Λa3 + βm− 3κa
3a

The rate of change of a is therefore divergent at a = 0, and when a diverges.
We need to consider 4 cases, depending on the signs of Λ and κ. We may always take a > 0.
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Case 1: Positive spatial curvature and positive cosmological constant
When κ = 1 and Λ > 0,

ȧ = ±
√

1
3

Λa2 +
βm

3a
− 1

Consider the turning points,

Λa3 − 3aκ+ βm = 0

This cubic equation has extrema when

Λa2 − 1 = 0

a = +
1√
Λ

This only exists when the cosmological constant is nonzero and m and Λ are large enough to keep the
argument of the radical positive. In this case, as a increases from zero, ȧ decreases from infinity to a finite
positive value, then increases again, becoming asymptotically linear in a,

ȧ→
√

Λ
3
a

This corresponds to a universe that expands from a big bang, slows its expansion as long as gravity dominates,
then expands faster and faster in response to the cosmological constant at an exponential rate:

a = Ae
√

Λ
3 t

When the cosmological constant is too small to keep the argument positive, the universe expands from a
big bang, slows to a stop, then recontracts to a big crunch.

Case 2: Positive spatial curvature and negative cosmological constant
When κ = 1 and Λ < 0,

ȧ = ±
√
βm

3a
− 1− 1

3
|Λ| a2

the universe expands from a big bang, but always reaches a point where ȧ = 0 and the contraction stops.
The universe then recontracts to a big crunch after a finite time. It is easy to check that when ȧ = 0, the
acceleration is negative,

ä =
1
2a
(
Λa2 −

(
κ+ ȧ2

))
=

1
2a
(
− |Λ| a2 − 1

)
< 0

so that if ȧ is positive and slows to zero it will go negative and the universe will collapse. If ȧ starts out
negative, it will stay negative to the singularity.

Case 3: Negative spatial curvature and positive cosmological constant
When κ = −1 and the cosmological constant is positive, we have

ȧ = ±
√
βm

3a
+ 1 +

1
3

Λa2

there argument of the radical is always positive, and ȧ 6= 0. Therefore, if ȧ > 0, the universe expands rapidly
from a big bang, slowing until the cosmological constant leads to a late-time exponential, a→ exp

(√
1
3Λ
)
t.

If the universe begins with ȧ < 0 it continues contracting, following the time-reverse of the ȧ > 0 case.
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Case 4: Negative spatial curvature and negative cosmological constant
When κ = −1 and the cosmological constant is positive, we have

ȧ = ±
√
βm

3a
+ 1− 1

3
|Λ| a2

so that for small a the universe expands from a big bang. As it expands the matter contribution becomes
less important and the cosmological constant drives ȧ to zero. When this happens, the acceleration is given
by

ä =
1
2a
(
Λa2 −

(
κ+ ȧ2

))
=

1
2a
(
− |Λ| a2 + 1

)
Since we have

0 =
βm

3a
+ 1− 1

3
|Λ| a2

we can write this as

ä =
1
2a

(
−3
(
βm

3a
+ 1
)

+ 1
)

=
1
2a

(
−βm

a
− 2
)

< 0

and the acceleration must change sign and recollapse.
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