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1 The metric
The easiest way to find the metric of the 2-sphere (or the sphere in any dimen-
sion) is to picture it as embedded in one higher dimension of Euclidean space,
then restrict to constant radius.

The 3-dim Euclidean metric in spherical coordinates is

ds2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2

so restricting to
r = R = const.

gives
ds2 = R2dθ2 +R2 sin2 θ dϕ2

This is the metric we will study. As a matrix,

gij =
(
R2 0
0 R2 sin2 θ

)
with inverse

gij =
(

1
R2 0
0 1

R2 sin2 θ

)
There are more intrinsic ways to get this metric. One approach is to specify

the symmetries we require – three independent rotations. There are techniques
for finding the most general metric with given symmetry, so we can derive this
form directly. Alternatively, we could ask for 2-dim spaces of constant curva-
ture. Computing the metric for a general 2-geometry, then imposing constant
curvature gives a set of differential equations that will lead to this form.

2 Curvature: a plan
One definition of curvature starts by carrying a vector by parallel transport
around a closed loop. In general, the vector returns rotated from its original
direction. The difference between this angle and the angle expected in a flat
geometry is called the angular deficit. Next, calculate the area enclosed in the
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loop. Then the curvature at point Q is the limit of the angular deficit per unit
area, as the loop shrinks to Q and the area to zero.

Explicitly, consider a closed curve C : λ ∈ R → M2, with tangent vector
uα at each point. Let vi0 be the components of an arbitrary vector at a point
P of the curve, and define the family of vectors vα (λ) around the curve as the
parallel transport of vi0 along ui:

0 = uiDiv
j

= ui
(
∂iv

j + vkΓjki
)

Since we have the metric, we can compute Γjki, so as soon as we specify the
curve, we can solve this equation for vi (λ). Then we can find the angle of
rotation, α, by taking the inner product of vi (λfinal) with vi (λinitial), where
we have

cosα =
gijv

i
0v
j (λfinal)

gijvi0v
j
0

Then the angular deficit is
∆ = 2π − α

since transport around a closed loop in flat space will rotate the vector by 2π.
For the area inside the loop, we integrate the 2-dim volume element. This

is given by the square root of the determinant of the metric, √g =
√

det (gij),
so that

A =
ˆ ˆ

√
g dϕ dθ

= R2

ˆ ˆ
sin θ dϕ dθ

3 Parallel transport on a non-geodesic circle

3.1 The curve
Now consider a circle around the sphere at constant θ0 (e.g., constant latitude
on the surface of Earth). We can parameterize the curve by the angle ϕ, so the
curve is given by

xi = (θ0, ϕ)

A vector tangent to the curve is

ti =
dxi

dϕ

= (0, 1)

The length of this tangent vector is given by

l2 = gijt
itj

= R2 sin2 θ0
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so the unit tangent is

ui =
1

R sin θ0
(0, 1)

3.2 The connection
We also need the connection. We have

Γijk = gimΓmjk

Γmjk =
1
2

(gmj,k + gmk,j − gjk,m)

Since the metric only has one non-constant component, gϕϕ, and that one de-
pends only on θ, the only non-vanishing derivative of the metric is gϕϕ,θ. This
means that the only non-vanishing Γijk must have two ϕs and one θ index. Using
the symmetry of the connection, we have

Γϕϕθ = Γϕθϕ =
1
2

(gϕϕ,θ + gϕθ,ϕ − gϕθ,ϕ)

=
1
2
gϕϕ,θ

= R2 sin θ cos θ

Γθϕϕ =
1
2

(gθϕ,ϕ + gθϕ,ϕ − gϕϕ,θ)

= −R2 sin θ cos θ

Raising the first index is easy because the metric is diagonal. We have simply

Γϕϕθ = Γϕθϕ = gϕϕΓϕϕθ

=
1

R2 sin2 θ
R2 sin θ cos θ

=
cos θ
sin θ

Γθϕϕ = gθθΓθϕϕ

= − 1
R2

R2 sin θ cos θ

= − sin θ cos θ

3.3 Parallel transport
The parallel transport equation is

0 = uiDiv
j

= ui
(
∂iv

j + vkΓjki
)

=
1

R sin θ0

(
∂ϕv

j + vkΓjkϕ
)
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There are two components to check. For j = θ we have

0 =
1

R sin θ0

(
∂ϕv

θ + vkΓθkϕ
)

=
1

R sin θ0

(
∂vθ

∂ϕ
+ vϕΓθϕϕ

)
=

1
R sin θ0

(
∂vθ

∂ϕ
− vϕ sin θ0 cos θ0

)
For j = ϕ,

0 =
1

R sin θ0

(
∂ϕv

ϕ + vkΓϕkϕ
)

=
1

R sin θ0

(
∂vϕ

∂ϕ
+ vθ

cos θ0
sin θ0

)
Therefore, we need to solve the coupled equations,

0 =
∂vθ

∂ϕ
− vϕ sin θ0 cos θ0

0 =
∂vϕ

∂ϕ
+ vθ

cos θ0
sin θ0

Taking a second derivative of the first equation and substituting the second,

0 =
∂2vθ

∂ϕ2
− ∂vϕ

∂ϕ
sin θ0 cos θ0

=
∂2vθ

∂ϕ2
+ vθ

cos θ0
sin θ0

sin θ0 cos θ0

=
∂2vθ

∂ϕ2
+ vθ cos2 θ0

Similarly, differentiating the second equation and substituting the first we have

0 =
∂2vϕ

∂ϕ2
+
∂vθ

∂ϕ

cos θ0
sin θ0

=
∂2vϕ

∂ϕ2
+ vϕ sin θ0 cos θ0

cos θ0
sin θ0

=
∂2vϕ

∂ϕ2
+ vϕ cos2 θ0

Each of these is just the equation for sinusoidal oscillation, so we may im-
mediately write the solution,

vθ (ϕ) = A cosαϕ+B sinαϕ
vϕ (ϕ) = C cosαϕ+D sinαϕ
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where
β = cos θ0

Starting the curve at ϕ = 0, it will close at ϕ = 2π. Then for vα we have the
initial condition vα (0) =

(
vθ0 , v

ϕ
0

)
, and from the original differential equations

we must have

∂vθ

∂ϕ

∣∣∣∣
ϕ=0

= vϕ0 sin θ0 cos θ0

∂vϕ

∂ϕ

∣∣∣∣
ϕ=0

= −vθ0
cos θ0
sin θ0

These conditions determine the constants A,B,C,D to be

vθ (ϕ) = vθ0 cosβϕ+
vϕ0 sin θ0 cos θ0

β
sinβϕ

= vθ0 cosβϕ+ vϕ0 sin θ0 sinβϕ

vϕ (ϕ) = vϕ0 cosβϕ− vθ0
sinβϕ
sin θ0

This gives the form of the transported vector at any point around the circle.

3.4 Norm of v
We have claimed that the norm of a vector is not changed by parallel transport.
We can check this in the current example. The initial squared norm of vα (0) is

|~v0|2 = R2
(
vθ0
)2

+R2 sin2 θ0 (vϕ0 )2

while the norm of

|~v|2 = R2
(
vθ0 cosβϕ+ vϕ0 sin θ0 sinβϕ

)2
+R2 sin2 θ0

(
vϕ0 cosβϕ− vθ0

sinβϕ
sin θ0

)2

= R2
((
vθ0
)2

cos2 βϕ+ 2vθ0v
ϕ
0 sin θ0 cosβϕ sinβϕ+ (vϕ0 )2 sin2 θ0 sin2 βϕ

)
+R2 sin2 θ0

(
(vϕ0 )2 cos2 βϕ− vθ0v

ϕ
0 cosβϕ

sinβϕ
sin θ0

+
(
vθ0
)2 sin2 βϕ

sin2 θ0

)
= R2

(
vθ0
)2

cos2 βϕ+ 2R2vθ0v
ϕ
0 sin θ0 cosβϕ sinβϕ+R2 (vϕ0 )2 sin2 θ0 sin2 βϕ

+R2 (vϕ0 )2 sin2 θ0 cos2 βϕ−R2vθ0v
ϕ
0 sin θ0 cosβϕ sinβϕ+R2

(
vθ0
)2

sin2 βϕ

= R2
(
vθ0
)2 (

cos2 βϕ+ sin2 βϕ
)

+R2 (vϕ0 )2 sin2 θ0
(
sin2 βϕ+ cos2 βϕ

)
= R2

(
vθ0
)2

+R2 (vϕ0 )2 sin2 θ0

= |~v0|2

which, as claimed, is independent of ϕ.
Now we turn to the calculation of the curvature.
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3.5 Curvature of the 2-sphere
We need the angular deficit and the area of the sphere enclosed by the circular
path.

3.5.1 The angular deficit

The angular deficit is given by

∆ = 2π − α

where the angle of rotatoin, α, is given by

cosα =
gijv

i
0v
j (λfinal)

gijvi0v
j
0

=
gijv

i
0v
j (2π)

gijvi0v
j
0

The inner product in the numerator is

gijv
i
0v
j (2π) = R2

(
vθ0v

θ
2π + vϕ0 v

ϕ
2π sin2 θ0

)
= R2

((
vθ0v

θ
0 cosβϕ+ vθ0v

ϕ
0 sin θ0 sinβϕ

)
+ vϕ0

(
vϕ0 cosβϕ− vθ0

sinβϕ
sin θ0

)
sin2 θ0

)
= R2

(
vθ0v

θ
0 cosβϕ+ vθ0v

ϕ
0 sin θ0 sinβϕ+ (vϕ0 )2 sin2 θ0 cosβϕ− vϕ0 vθ0 sin θ0 sinβϕ

)
= R2

((
vθ0
)2

+ (vϕ0 )2 sin2 θ0

)
cosβϕ

= |~v0|2 cosβϕ

The angle of rotation is therefore α = β = 2π cos θ0. Therefore, the angular
deficit is

∆ = 2π − α
= 2π (1− cos θ0)

3.5.2 The area enclosde by the loop

The area enclosed by the loop is

A =
ˆ
dϕ

ˆ
dθ
√
g

= R2

ˆ 2π

0

dϕ

ˆ θ0

0

sin θdθ

= −2πR2 cos θ|θ00
= −2πR2 (cos θ0 − 1)
= 2πR2 (1− cos θ0)
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3.5.3 The curvature

The curvature is now given by the limit as we shrink the loop to a point,

Curvature = lim
θ0→0

∆
A

= lim
θ0→0

2π (1− cos θ0)
2πR2 (1− cos θ0)

=
1
R2

This increases as the sphere shrinks, which indeed makes the curvature greater.

4 Comparison with the Riemann curvature ten-
sor

We can also compute the curvature using the Riemann curvature tensor. We
already have the connection,

Γϕϕθ = Γϕθϕ =
cos θ
sin θ

Γθϕϕ = − sin θ cos θ

so it is straightforward to compute the curvature using

Rijkm = Γijm,k − Γijk,m + ΓinkΓnjm − ΓinmΓnjk

Since Rijkm = −Rjikm = −Rijmk, there is only one independent component.
All of the rest follow from the symmetries of the curvature tensor. We can
compute any one non-vanishing component. Choose

Rθϕθϕ = Γθϕϕ,θ − Γθϕθ,ϕ + ΓθnθΓ
n
ϕϕ − ΓθnϕΓnϕθ

= (− sin θ cos θ),θ − 0 + 0 · Γnϕϕ − ΓθϕϕΓϕϕθ

=
(
− cos2 θ + sin2 θ

)
− (− sin θ cos θ)

(
cos θ
sin θ

)
= sin2 θ

The full curvature tensor may be written in terms of the metric and Kronecker
delta by including all the necessary symmetries,

Rijkm =
1
R2

(
δikgjm − δimgjk

)
Then check that

Rθϕθϕ =
1
R2

(
δθθgϕϕ − δθϕgϕθ

)
=

1
R2

gϕϕ

= sin2 θ
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Since the expression in terms of the metric has all the right symmetries, and the
value of the one independent component is correct, it gives the full curvature
tensor.

We may find the Ricci tensor by contraction:

Rjm ≡ Rijim

=
1
R2

(
δiigjm − δimgji

)
=

1
R2

(2gjm − gjm)

=
1
R2

gjm

The Ricci scalar is the contraction of this. Using the inverse metric,

R ≡ gjmRjm

=
1
R2

gjmgjm

=
2
R2

which differs from our angular deficit formula only by an overall constant.
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