
Irreducible representations of the rotation group
We wish to find the complete set of objects on which linear representations the
rotation group can act. A linear representation of a group is a homomorphism
from the group to a set of matrices - essentially, the group multiplication be-
comes matrix multiplication, and we think of each matrix in the set as a distinct
group element.

In general, there are many linear representations of a given group. We have
seen, for example, that the (infinite-dimensional) Lie group of general coordinate
transformations (the diffeomorphism group) acts multi-linearly on tensors of any
rank and type,

(
p
q

)
. While each of these types of tensor is a linear representation

of the diffeomorphism group, they are not irreducible representations, because
for such tensors of rank larger than one (i.e, all except scalars and vectors) we
can decompose the tensor into parts which don’t mix.

Instead of the rather large groups of diffeomorphisms, let’s focus on the more
manageable group of rotations. These also act on tensors of all ranks and types.
We can decompose a rank n matrix, Mij , of type

(
0
2

)
, for example, into the

following irreducible parts:

Mij =
1
2

(
Mij +Mji −

2
n
δijδ

mnMmn

)
+

1
2

(Mij −Mji) +
1
n
δijδ

mnMmn

To see that the parts are irreducible, consider the action of a rotation of Mij on
each part:

M̃ij = Λki ΛljMkl

For the trace part,

1
n
δij

(
trM̃

)
= Λki Λlj

(
1
n
δklδ

mnMmn

)
= Λki Λljδkl

(
1
n
δmnMmn

)
= δij

(
1
n
δmnMmn

)
=

1
n
δijtrM

since δij is a rotationally invariant tensor. Thus, trM is a scalar, invariant under
rotations. For the antisymmetric part, we have

M̃[ij] =
1
2

(
M̃ij − M̃ji

)
=

1
2
(
Λki ΛljMkl − ΛkjΛliMkl

)
=

1
2
(
Λki ΛljMkl − Λki ΛljMlk

)
= Λki ΛljM[kl]
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so the transformation of the antisymmetric part depends only on the original
antisymmetric part. Finally, the proof that the traceless, symmetric part is
irreducible proceeds just like the proof for the antisymmetric part.

Our goal is to find all such irreducible represenations (“irreps”). So far, we
have three. Each of these three representations forms a distinct vector space: the
1-dimensional space of scalars, the 3-dimensional vector space of antisymmetric
matrices, and the 5-dimensional vector space of symmetric, traceless matrices.

Exercise: Show that linear combinations of antisymmetric matrices are an-
tisymmetric.

Exercise: Check the dimension of each of these three vector spaces.
Our general proof proceeds from the properties of the Lie algebra, so (3), of

the rotation group, SO (3).

Irreps of so(3)
We have shown that the Lie algebra, so (3), (and also su (2)) takes the form

[Ki,Kj ] = εijkKk

where the generators, Ki, are anti-hermitian (and therefore, if real, antisym-
metric). Let us assume only this set of commutation relations, without any
other constraint on the form of the operators. It will be simpler to work with
Hermitian operators, so set

K = −iJ = −i (Jx, Jy, Ja)

and substituting, we find

[Ji, Jj ] = iεijkJk

We can always choose a basis such that one of these matrices is diagonal. Choose
Jz to be the diagonal one. Since Jz does not commute with either Jx or Jy,
we cannot simultaneously diagonalize either of those. However, consider the
squared magnitude, J2 = JiJi,[

J2, Jk
]

= [JiJi, Jk]
= Ji [Ji, Jk] + [Ji, Jk] Ji
= iJiεikmJm + iεikmJmJi

= iεikmJiJm − iεikmJiJm
= 0

where the last nontrivial step was just a renaming of indices. Therefore, we may
diagonalize J2 and Jz simultaneously.

Our goal is now to build vector spaces on which these operators act. I will
use ket notation, |a〉, to denote these vectors. The label, a, can be anything we
choose to identify the vector. I could just as well use a, or ~a, or aα, but having
room for labels is handy. Since we are in a basis where J2 and Jz are diagonal,
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we can label the basis with their eigenvalues. Let these eigenvalues be called
α, β (for the moment), so that

J2 |α, β〉 = α |α, β〉
Jz |α, β〉 = β |α, β〉

(In quantum mechanics, the Ji are angular momentum operators, with units
kgm2

s , and the eigenvalues have an additional factor of }. Here we may imagine
that the Ji have been divided by this factor to become dimensionless). We may
take the eigenvectors to be normalized to one. Writing the inner product of two
vectors as

〈a | a〉

we have
〈α, β | α, β〉 = 1

for all α and β.
Now consider two more operators,

J+ = Jx + iJy

J− = Jx − iJy

These obviously satisfy [
J2, J±

]
= 0

and since Jx and Jy are Hermitian we have

J†+ = J−

but with Jz we have

[Jz, J+] = [Jz, Jx + iJy]
= [Jz, Jx] + i [Jz, Jy]
= iJy + Jx

= J+

and similarly,

[Jz, J−] = −J−

We also have

[J+, J−] = [Jx + iJy, Jx − iJy]
= [Jx,−iJy] + + [iJy, Jx]
= 2Jz

Now, apply J+ to an eigenvector,

J+ |α, β〉
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and consider the effect of J2 and Jz on this new vector,

J2J+ |α, β〉 = J+J2 |α, β〉
= αJ+ |α, β〉

and, using the commutator to write JzJ+ = J+Jz + J+,

JzJ+ |α, β〉 = (J+Jz + J+) |α, β〉
= βJ+ |α, β〉+ J+ |α, β〉
= (β + 1) J+ |α, β〉

Therefore, the new vector is also an eigenvector of both J2 and Jz, and we have
the new eigenvalue, β + 1, for Jz. Therefore, we may write

J+ |α, β〉 = A |α, β + 1〉

where we require a constant because we only know that the new vector is propor-
tional to the given eigenstate. We can also act with J− to reduce the eigenvalue
of Jz by 1,

J2J− |α, β〉 = J−J2 |α, β〉
= αJ− |α, β〉

and, using the commutator to write JzJ− = J−Jz − J−,

JzJ− |α, β〉 = (J−Jz − J−) |α, β〉
= βJ− |α, β〉 − J− |α, β〉
= (β − 1) J− |α, β〉

and therefore,
J− |α, β〉 = B |α, β − 1〉

Now notice that the norm of J+ |α, β〉, which is necessarily non-negative,
satisfies

0 ≤ 〈α, β| J†+J+ |α, β〉
= 〈α, β| J−J+ |α, β〉

Similarly,

0 ≤ 〈α, β| J†−J− |α, β〉
= 〈α, β| J+J− |α, β〉

Combining these, we have

0 ≤ 〈α, β| 1
2

(J+J− + J−J+) |α, β〉
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Then, using

J−J+ = (Jx − iJy) (Jx + iJy)
= J2

x − iJyJx + iJxJy + J2
y

= J2 − J2
z + i [Jx, Jy]

= J2 − J2
z − Jz

and similarly,

J+J− = J2 − J2
z + Jz

we have the inequality

0 ≤ 〈α, β| 1
2

(J+J− + J−J+) |α, β〉

= 〈α, β|
(
J2 − J2

z

)
|α, β〉

= 〈α, β|
(
α− β2

)
|α, β〉

= α− β2

Therefore,
β2 ≤ α

Returning to the raising and lowering operators, we see that we can only
apply J+ or J−, a finite number of times – otherwise this bound on β would be
exceeded. Therefore, there must be some vector which terminates the action of
each of these operators, i.e., two nonzero vectors |α, βmax〉 and |α, βmin〉

J+ |α, βmax〉 = 0
J− |α, βmin〉 = 0

Acting on the first with J−, we may write

0 = J−J+ |α, βmax〉
=

(
J2 − J2

z − Jz
)
|α, βmax〉

=
(
α− β2

max − βmax
)
|α, βmax〉

and we conclude that

α = β2
max + βmax

= βmax (βmax + 1)

Acting on the second with J+ we have

0 = J+J− |α, βmin〉
=

(
J2 − J2

z + Jz
)
|α, βmin〉

=
(
α− β2

min + βmin
)
|α, βmin〉
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so that
α = βmin (βmin − 1)

Equating the two expressions, we require

βmin (βmin − 1) = βmax (βmax + 1)

Setting βmax = aβmin + b gives

βmin (βmin − 1) = (aβmin + b) (aβmin + b+ 1)
β2
min − βmin = a2β2

min + abβmin + a (b+ 1)βmin + b (b+ 1)

The quadratic part requires a = ±1, leaving the pair of equations,

−βmin = ±bβmin ± (b+ 1)βmin
b (b+ 1) = 0

With b = 0 we find
−βmin = ±βmin

while b = −1 gives
−βmin = ∓βmin

so either
βmax = −βmin

or
βmax = βmin − 1

Since the second is contradictory, we have

βmin = −βmax

and because we must be able to step from one to the other in unit steps, they
must differ by an integer, n = 0, 1, 2, . . .,

n = βmax − βmin
= 2βmax

βmax =
n

2

Let j = n
2 be any integer multiple of 1

2 . Then gives

α = βmax (βmax + 1)
= j (j + 1)

This gives a complete set of states; replacing α with j and β with m,

|α, β〉 → |j,m〉
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we rewrite the eigenvalues equations as

J2 |j,m〉 = j (j + 1) |j,m〉
Jz |j,m〉 = m |j,m〉

The action of J± on these vectors may be found from

〈j,m| J−J+ |j,m〉 = 〈j,m|
(
J2 − J2

z − Jz
)
|j,m〉

= 〈j,m| (j (j + 1)−m (m+ 1)) |j,m〉
= j (j + 1)−m (m+ 1)

This gives us the squared norm of J+ |j,m〉. Since we know that

J+ |j,m〉 = λ |j,m+ 1〉

and all of the |j,m〉 are normalized, we identify λ∗λ = j (j + 1) − m (m+ 1).
Choosing the phase to be zero gives

J+ |j,m〉 =
√
j (j + 1)−m (m+ 1) |j,m+ 1〉

A similar calculation gives

J− |j,m〉 =
√
j (j + 1)−m (m− 1) |j,m− 1〉

How do the rotation generators (and therefore the rotations they generate)
act on these states? We have

Jx |j,m〉 =
1
2

(J+ + J−) |j,m〉

=
1
2

√
j (j + 1)−m (m+ 1) |j,m+ 1〉

+
1
2

√
j (j + 1)−m (m− 1) |j,m− 1〉

Jy |j,m〉 =
1
2i

(J+ − J−) |j,m〉

=
1
2i

√
j (j + 1)−m (m+ 1) |j,m+ 1〉

= − 1
2i

√
j (j + 1)−m (m− 1) |j,m− 1〉

Jz |j,m〉 = m |j,m〉

The important thing to notice about these relationships is that while Jx and Jy
can take |j,m〉 to any other value of m, none of the three generators changes
the value of j. Since m ranges from −j to +j in integer steps, this means that
2j + 1 distinct basis vectors in the set

{|j,−j〉 , |j,−j + 1〉 , |j,−j + 2〉 , . . . , |j, j − 2〉 , |j, j − 1〉 , |j, j〉}
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rotate into one another when acted on by various rotations. These are therefore
the distinct vector representations on which rotations can act. Since j is half-
integer, the number of independent basis vectors – hence the dimension of the
representation – is 2j+1 = 2

(
n
2

)
+1 = 1, 2, 3, . . .. That is, we get representations

of every integer dimension. The odd cases correspond to spin; the even cases to
orbital angular momentum.
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