Practice with exterior calculus

1. Work out the form of the Laplacian of a 3-form, for arbitrary n.
2. Define the following differential forms to characterize the electric and magnetic fields:

$$
\begin{aligned}
\boldsymbol{E} & =E^{i} g_{i j} \mathbf{d} x^{j}=E_{j} \mathbf{d} x^{j} \\
\boldsymbol{B} & =\frac{1}{2} B^{i} e_{i j k} \mathbf{d} x^{j} \wedge \mathbf{d} x^{k} \\
\boldsymbol{J} & =J^{i} g_{i j} \mathbf{d} x^{j}
\end{aligned}
$$

where E^{i}, B^{i}, and J^{i} are the covariant components in a vector basis. Rewrite Maxwell's equations,

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{4 \pi}{c} \rho \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E}+\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} & =0 \\
\nabla \times \mathbf{B}-\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} & =\frac{4 \pi}{c} \mathbf{J}
\end{aligned}
$$

in terms of $\mathbf{E}, \mathbf{B}, \mathbf{J}$ and a function, ρ.
3. Write and prove expressions in terms of differential forms which are equivalent to each of the following (from J. D. Jackson, Classical Electrodynam$i c s$). Here \mathbf{a}, \mathbf{b} and \mathbf{c} are arbitrary vectors, and ψ is an arbitrary function. You don't need to translate between vector and form expressions - just write the equivalent expression using forms and prove it.

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}) \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d}) & =(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\
\nabla \times \nabla \psi & =0 \\
\nabla \cdot(\nabla \times \mathbf{a}) & =0 \\
\nabla \times(\nabla \times \mathbf{a}) & =\nabla(\nabla \cdot \mathbf{a})-\nabla^{2} \mathbf{a} \\
\nabla \cdot(\psi \mathbf{a}) & =\mathbf{a} \cdot \nabla \psi+\psi(\nabla \cdot \mathbf{a}) \\
\nabla \times(\psi \mathbf{a}) & =\nabla \psi \times \mathbf{a}+\psi(\nabla \times \mathbf{a}) \\
\nabla(\mathbf{a} \cdot \mathbf{b}) & =(\mathbf{a} \cdot \nabla) \mathbf{b}+(\mathbf{b} \cdot \nabla) \mathbf{a}+\mathbf{a} \times(\nabla \times \mathbf{b})+\mathbf{b} \times(\nabla \times \mathbf{a}) \\
\nabla \times(\mathbf{a} \times \mathbf{b}) & =\mathbf{a}(\nabla \cdot \mathbf{b})-\mathbf{b}(\nabla \cdot \mathbf{a})+(\mathbf{b} \cdot \nabla) \mathbf{a}-(\mathbf{a} \cdot \nabla) \mathbf{b} \\
\nabla \cdot(\mathbf{a} \times \mathbf{b}) & =\mathbf{b} \cdot(\nabla \times \mathbf{a})-\mathbf{a} \cdot(\nabla \times \mathbf{b})
\end{aligned}
$$

4. Let

$$
\begin{aligned}
\boldsymbol{\omega} & =x \mathbf{d} x+y \mathbf{d} y+z \mathbf{d} z \\
\boldsymbol{\eta} & =\frac{x}{r} \mathbf{d} x+\frac{y}{r} \mathbf{d} y+\frac{z}{r} \mathbf{d} z
\end{aligned}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Find the value of the following expressions using differential forms:

$$
\begin{array}{r}
\nabla \cdot \boldsymbol{\omega} \\
\nabla \times \boldsymbol{\omega} \\
\nabla \cdot \boldsymbol{\eta} \\
\nabla \times \boldsymbol{\eta}
\end{array}
$$

Also, show that for any vector a,

$$
(\mathbf{a} \cdot \nabla) \boldsymbol{\eta}=\frac{1}{r}[\mathbf{a}-\mathbf{n}(\mathbf{a} \cdot \mathbf{n})]
$$

