Exercises using the wedge product, exterior derivative and Hodge dual

1. Let $\boldsymbol{\omega}, \boldsymbol{\eta}$ be 1-forms in 3-dimensions. Show that the components of $\boldsymbol{\omega} \wedge \boldsymbol{\eta}$ are the same three functions as the covariant components of the cross product of the corresponding vectors.
2. Let $\boldsymbol{\tau}$ be a 2-form in 3-dimensions. Find $\boldsymbol{\tau} \wedge \boldsymbol{\omega}$ and $\boldsymbol{\tau} \wedge \boldsymbol{\omega} \wedge \boldsymbol{\eta}$.
3. Explore the effect of the exterior derivative, \mathbf{d}, on 2 -forms and on 3 -forms. In particular, find

$$
\mathrm{d} \omega
$$

where

$$
\boldsymbol{\omega}=\frac{1}{2!} v^{i} \varepsilon_{i j k} \mathbf{d} x^{j} \wedge \mathbf{d} x^{k}
$$

4. Explicitly write the form of the generalized Stokes theorem for 2-forms in 3-dimensions.
5. Suppose

$$
\begin{aligned}
h & =h(x, y) \\
f & =f(x, y)
\end{aligned}
$$

Consider the differential equation

$$
\mathbf{d} f=h \mathbf{d} x+\mathbf{d} y
$$

What condition on the function h is necessary and sufficient to guarantee that this equation is integrable? Note that this single equation is equivalent to the system of equations

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=h \\
& \frac{\partial f}{\partial y}=1
\end{aligned}
$$

6. Let f be a function of 3 variables, (x, y, z). For what values of the constants a and b is the equation

$$
\mathbf{d} f=x y^{2} \mathbf{d} x+\left(a x^{2} y+b y z^{3}\right) \mathbf{d} y+y^{2} z^{2} \mathbf{d} z
$$

integrable? Using those values, integrate to find the function f.
7. Let

$$
\begin{array}{ccc}
f & \in & \Lambda_{0} \\
\boldsymbol{\omega} & \in & \Lambda_{1} \\
\boldsymbol{\eta} & \in & \Lambda_{2} \\
\boldsymbol{\tau} & \in & \Lambda_{3}
\end{array}
$$

Find the Hodge dual of each, ${ }^{*} f,{ }^{*} \boldsymbol{\omega},{ }^{*} \boldsymbol{\eta},{ }^{*} \boldsymbol{\tau}$ and the double dual of each, ${ }^{* *} f,{ }^{* *} \boldsymbol{\omega},{ }^{* *} \boldsymbol{\eta},{ }^{* *} \boldsymbol{\tau}$. You will need the relations,

$$
\begin{aligned}
e^{i j k} & =\frac{1}{\sqrt{g}} \varepsilon^{i j k} \\
e_{i j k} & =\sqrt{g} \varepsilon_{i j k}
\end{aligned}
$$

and the identity

$$
\begin{aligned}
e^{i j k} e_{i j k} & =6 \delta_{l m n}^{i j k} \\
& =6 \delta_{l}^{[i} \delta_{m}^{j} \delta_{n}^{k]} \\
& =\delta_{l}^{i} \delta_{m}^{j} \delta_{n}^{k}+\delta_{l}^{j} \delta_{m}^{k} \delta_{n}^{i}+\delta_{l}^{k} \delta_{m}^{i} \delta_{n}^{j}-\delta_{l}^{j} \delta_{m}^{i} \delta_{n}^{k}-\delta_{l}^{i} \delta_{m}^{k} \delta_{n}^{j}-\delta_{l}^{k} \delta_{m}^{j} \delta_{n}^{i}
\end{aligned}
$$

(Note: the constants have been corrected from the class notes. Check the trace of both sides:

$$
6=27+3+3-9-9-9)
$$

