Exercises using the wedge product

1. Find the dimension of the space of p-forms, Λ_{p}, on a space of n-dimensions.
2. Find the dimension of the space of forms,

$$
\operatorname{dim}\left(\Lambda_{0} \otimes \Lambda_{1} \otimes \Lambda_{2} \otimes \cdots \otimes \Lambda_{n}\right)
$$

This is just the sum of dimensions of the Λ_{p},

$$
\sum_{p=0}^{n} \operatorname{dim}\left(\Lambda_{p}\right)
$$

3. We may define the wedge product,

$$
\wedge: \Lambda_{1} \otimes \Lambda_{1} \rightarrow \Lambda_{2}
$$

as an antisymmetric, linear, and associative mapping given by antisymmetrizing the outer product:

$$
\boldsymbol{\omega} \wedge \boldsymbol{\eta}=\frac{1}{2}(\boldsymbol{\omega} \otimes \boldsymbol{\eta}-\boldsymbol{\eta} \otimes \boldsymbol{\omega})
$$

Use these properties on the pairwise product to show that if $\boldsymbol{\omega}$ is a p-form $\left(\boldsymbol{\omega} \in \Lambda_{p}\right)$ and $\boldsymbol{\eta}$ is a q-form $\left(\boldsymbol{\eta} \in \Lambda_{q}\right)$, then

$$
\boldsymbol{\omega} \wedge \boldsymbol{\eta}=(-1)^{p q} \boldsymbol{\eta} \wedge \boldsymbol{\omega}
$$

4. Let $n=3$. Let two 1 -forms be given by

$$
\begin{aligned}
\boldsymbol{\omega} & =\omega_{i} \mathbf{d} x^{i} \\
\boldsymbol{\eta} & =\eta_{j} \mathbf{d} x^{j}
\end{aligned}
$$

Write out the wedge product of these two 1-forms explicitly. Compare the result to the components as the cross product of the corresponding covariant vectors.

