
1 A linear representation of the conformal group
We wish to find a linear representation of the conformal group.

On flat spacetime, in Cartesian coordinates, we can represent the action of the conformal group as the set of
transformations

x̃a = Λ
a
bxb

x̃a = xa +ba

x̃a = λxa

x̃a =
xa + x2ca

1+2caxa + c2x2

where
ηcdΛ

c
aΛ

d
b = ηab

so that the Λa
b are Lorentz transformations. The second transformation is a translation, the third a dilatation and

the final transformations, called special conformal transformations may be seen to be conformal by considering the
inversion,

x̃a =
xa

x2

Inversion is a discrete transformation, and since

s̃2 =
xaxa

(x2)2 =
1

(x2)2 s2

it is conformal. A special conformal transformation is an inversion followed by translation, followed by a second
inversion:

xa→ xa

x2 →
xa

x2 + ca→
xa

x2 + ca(
xb

x2 + cb
)2 =

xa + x2ca

1+2caxa + c2x2

Notice that there are 15 conformal transformations: 6 Lorentz, 4 translation, 1 dilatation and 4 special conformal
transformations.

We define the conformal transformations as those transformations preserving the light cone. This is equivalent to
preserving angles, and also equivalent to preserving ratios of lengths. Since a light cone centered at a point ab may be
described by the equation

0 = λ

(
xb−ab

)
(xb−ab)

= λx2−2λxbab +λa2

conformal transformations will be those transformations which map(
λ ,ab

)
→
(

σ ,bb
)

Label these parameters as

Bb = λab

B4 = λ

B5 =
1
2

λa2

Then BA =
(
Ba,B4,B5

)
satisfies

BaBa−2B4B5 = 0

where BaBa = ηabBaBb. Define a 6-dim metric,

ηAB =

 ηab
0 −1
−1 0


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so that
ηABBABB = 0

Any transformation preserving this null quadratic form induces a change in
(
λ ,ab

)
that maps to another 4-dim light

cone.
Although we want ηAB in this particular form, we notice that if we were to diagonalize it the lower right corner

becomes
(
±1 0
0 ∓1

)
, so ηAB as four positive and two negative eigenvalues. The linear transformations preserving

ηAB therefore comprise the group O(4,2). Since we may recover coordinates, ab, near the origin and coordinatesm
ab

a2 , near infinity, on Minkowski space by forming the ratios

ab =
Bb

B4

ab

a2 =
Bb

2B5

we see that any scaling, BA→ αBA has no effect on spacetime. We therefore restrict to SO(4,2). Finally, note that

a2 =
2B5

B4

2 The special orthogonal group, SO(4,2)
Next, we find the generators of SO(4,2). Let g = 1+ ε be infinitesimally near the identity and require

ηAB = ηCDgC
AgD

B

= ηCD
(
δ

C
A + ε

C
A
)(

δ
D
B + ε

D
B
)

= ηAB +ηCBε
C
A +ηADε

D
B +O

(
ε

2)
and therefore, using the metric to lower the upper index on ε ,

εBA =−εAB

as we have found before for pseudo-orthogonal groups. We divide the antisymmetric matrices into four types:

[Mab] =
(

εab
0

)

[Pa] =


0 −1

0 1
0 1

0 1
1 −1 −1 −1 0

0



[Ka] =


0 −1

0 1
0 1

0 1
0

1 −1 −1 −1 0



[D] =


0

0
0

0
0 −1
1 0


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The first of these generate Lorentz transformation, Λa
b = exp

( 1
2 wa

bεb
a
)
, where εb

a = ηbcεca = −ηbcεac, and we will
say no more about them. We raise the first index on the remaining generators to recover εA

B,

[Pa]
A

B =

 ηab
0 −1
−1 0




0 −1
0 1

0 1
0 1

1 −1 −1 −1 0
0



=


0 1

0 1
0 1

0 1
0 0

−1 1 1 1 0 0



[Ka]
A

B =


0 1

0 1
0 1

0 1
−1 1 1 1 0 0

0 0



[D]A B =


0

0
0

0
−1

1


We exponentiate each in turn.

For Pa,

g(ba) = exp(baPa)

= exp


0 b0

0 b1

0 b2

0 b3

0 0
−b0 b1 b2 b3 0 0



= 1+


0 b0

0 b1

0 b2

0 b3

0 0
−b0 b1 b2 b3 0 0

+
1
2


0

0
0

0
0 0

baba 0


with the remaining powers vanishing. Therefore, the four transformations give

B̃A =


1 b0

1 b1

1 b2

1 b3

1 0
−b0 b1 b2 b3 1

2 baba 1




B0

B1

B2

B3

B4

B5


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=


B0 +b0B4

B1 +b1B4

B2 +b2B4

B3 +b3B4

B4

B5 +Baba + 1
2 B4baba


On spacetime, this transformation of BA gives

x̃a =
B̃a

B̃4

=
Ba +baB4

B4

= xa +ba

and is therefore a translation. On a coordinate centered on infinity, this same translation becomes

ỹa =
x̃a

x̃2

=
B̃a

2B̃5

=
Ba +baB4

2
(
B5 +Baba + 1

2 B4baba
)

=
Ba

2B5 +ba B4

2B5

1+ Baba
B5 + B4baba

2B5

=
ya + B4

2B5 ba

1+2yaba + B4

2B5 baba

and since x2 = 2B5

B4 = 1
y2 ,

ỹa =
ya + B4

2B5 ba

1+2yaba + B4

2B5 baba

=
ya + y2ba

1+2yaba + y2b2

This means that in a neighborhood of the point at infinity, a translation takes a somewhat complicated form – the same
form that a special conformal transformation takes in a neighborhood of the origin.

Now consider a special conformal transformation. We have

g(ca) = exp(caKa)

= exp

 0 ca

ca 0 0
0 0


= 1+

 0 ca

ca 0 0
0 0

+
1
2

 0 0 0
0 0 caca

0 0 0


=

 1 ca

ca 1 1
2 caca

0 1



4



Therefore,

B̃A =

 1 ca

ca 1 1
2 caca

0 1

 Ba

B4

B5


=

 Ba +B5ca

B4 +Baca + 1
2 c2B5

B5


The coordinates near the origin and near infinity change according to:

x̃a =
B̃a

B̃4

=
Ba +B5ca

B4 +Baca + 1
2 c2B5

=
Ba

B4 + B5

B4 ca

1+ Ba

B4 ca + 1
2 c2 B5

B4

=
xa + 1

2 x2ca

1+ xaca + 1
4 c2x2

Now redefine the parameter, replacing ca→ 2ca and we have

x̃a =
xa + x2ca

1+2xaca + c2x2

For the inverse coordinate,

ỹa =
x̃a

x̃2

=
B̃a

2B̃5

=
Ba +B5ca

2B5

= ya +
1
2

ca

and making the same change of parameter, we have a simple translation at infinity,

ỹa = ya + ca

Finally, we find the dilatations,

g(λ ) = exp(λD)

= exp

 0 0 0
0 −λ 0
0 0 λ


=

 1 0 0
0 e−λ 0
0 0 eλ


The 6-vector changes to

B̃A =

 1 0 0
0 e−λ 0
0 0 eλ

 Ba

B4

B5


=

 Ba

e−λ B4

eλ B5


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so the spacetime coordinates transform as

x̃a =
B̃a

B̃4

= eλ Ba

B4

= eλ xa

and

ỹa =
B̃a

2B̃5

= e−λ Ba

2B5

= e−λ ya

Notice that the coordinates at the origin and at infinity transform oppositely under dilatations. This will have important
consequences.

3 Maurer-Cartan structure equations for SO(4,2)
We already know that the Lie algebra for pseudo-orthogonal groups takes the form

[MAB,MCD] =−1
2

(ηBCMAD−ηACMBD−ηBDMAC +ηADMBC)

where I’ve written the labels down so that the antisymmetrizations, [A,B] and [C,D] are easier to see. Defining a dual
basis of 1-forms by 〈

MA
B,ωC

D
〉

= 2∆
AC
DB

the Maurer-Cartan structure equations are
dω

A
B = ω

C
B∧ω

A
C

where the the labels have been raised with ηAB.
When we use the metric in the off-diagonal form with nonzero elements (ηab,η45,η54), the antisymmetry relations

give some unexpected relations. We have
ω

A
B =−η

AD
ηBCω

C
D

We want to separate the 6-dim indices, A,B, into constituent parts, A = (a,4,5). Therefore, for A = a,

ω
a
b = −η

aD
ηbCω

C
D

= −η
ad

ηbcω
c
d

ω
a
4 = −η

aD
η4Cω

C
D

= −η
ad

η45ω
5
d

= η
ad

ω
5
d

ω
a
5 = −η

aD
η5Cω

C
D

= −η
ad

η54ω
4
d

= η
ad

ω
4
d

Next, setting A = 4,

ω
4
b = −η

4D
ηbCω

C
D

= −η
45

ηbcω
c
5

= ηbcω
c
5

6



ω
4
4 = −η

4D
η4Cω

C
D

= −η
45

η45ω
5
5

= −ω
5
5

ω
4
5 = −η

4D
η5Cω

C
D

= −η
45

η54ω
4
5

= −ω
4
5

= 0

Finally, with A = 5, we have

ω
5
b = ηbcω

c
4

ω
5
4 = −ω

5
4

= 0
ω

5
5 = −ω

4
4

Notice that the connection forms with one or two A = 5 indices may be expressed in terms of corresponding A = 4
forms. An independent set is given by

{
ωa

b,ω
4
b,ω

a
4,ω

4
4
}

, where we eliminate the rest using

ω
a
5 = η

ab
ω

4
b

ω
5
a = ηabω

b
4

ω
5
5 = −ω

4
4

ω
5
4 = 0

We can simplify the names of the remaining independent set by dropping the “4” indices,{
ω

a
b,ω

4
b,ω

a
4,ω

4
4
}
→{ωa

b,ωb,ω
a,ω}

Another efficiency measure is to assume the wedge product between forms,

ω
C
B∧ω

A
C→ ω

C
Bω

A
C

so that whenever two forms are written next to each other, the wedge product is assumed.
Employing these simplifications, we make the same breakdown of the structure equations, dωA

B = ωC
BωA

C. For the
connection forms dual to Lorentz transformations we find that

dω
a
b = ω

C
bω

a
C

= ω
c
bω

a
c +ω

4
bω

a
4 +ω

5
bω

a
5

= ω
c
bω

a
c +ω

4
bω

a
4 +ω

5
bω

a
5

= ω
c
bω

a
c +ω

4
bω

a
4 +ηbdω

d
4η

ac
ω

4
c

= ω
c
bω

a
c +(δ a

d δ
c
b −ηbdη

ac)ω
4
cω

d
4

= ω
c
bω

a
c +2∆

ac
dbω

4
cω

d
4

= ω
c
bω

a
c +2∆

ac
dbωcω

d

For the connection forms dual to translations, we have

dω
a
4 = dω

a

= ω
C
4ω

a
C

= ω
c
4ω

a
c +ω

4
4ω

a
4

= ω
c
ω

a
c +ωω

a

The special conformal transformations are similar,

dω
4
a = dωa

= ω
C
aω

4
C

= ω
c
aωc +ωaω
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Finally, the dilatation equation is

dω
4
4 = dω

= ω
C
4ω

4
C

= ω
a
ωa

Collecting the results, we have the Maurer-Cartan structure equations for the conformal group, SO(4,2):

dω
a
b = ω

c
bω

a
c +2∆

ac
dbωcω

d

dω
a = ω

c
ω

a
c +ωω

a

dωa = ω
c
aωc +ωaω

dω = ω
a
ωa

Consider these for a moment. The Lorentz transformations include the same terms, dωa
b = ωc

bωa
c, that we had from

the Poincaré gauging, but there is an additional term, 2∆ac
dbωcωd , that exists only because we have both the translations

and the special conformal translations. The equation for translations also has one new term. The first term on the right,
ωcωa

c , corrects for the effect of a local Lorentz transformation on the derivative of the solder form, ωa, while the
second term, ωωa, makes the translation equation invariant under local changes of units. The third equation is much
like the second. Notice that if we write the fields in the same order as for the translation equation, that is,

dω
a = ω

c
ω

a
c +ωω

a

dωa = −ωcω
c
a−ωωa

that they have opposite signs for the terms on the right. That means that a local Lorentz transformation that transforms
the solder form in one way will transform the special conformal gauge field in the opposite way; a dilatation that
transforms the solder form by eλ will transform the special conformal gauge field by e−λ . Finally, consider the
dilatation equation. The Weyl vector no longer has vanishing curl, dω . Depending on how we carry out the gauging
of the conformal group, the new term can be important.
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