
1 Exterior Calculus

1.1 Differential forms
In the study of differential geometry, differentials are defined as linear mappings
from curves to the reals. This suggests a generalization, since we know how to
integrate over surfaces and volumes as well as curves. In higher dimensions we
also have higher order multiple integrals. We now consider the integrands of
arbitrary multiple integrals

ˆ
f(x)dl,

ˆ ˆ
f(x)dS,

ˆ ˆ ˆ
f(x)dV (1)

Much of their importance lies in the coordinate invariance of the resulting inte-
grals.

One of the important properties of integrands is that they can all be regarded
as oriented. If we integrate a line integral along a curve from A to B we get a
number, while if we integrate from B to A we get minus the same number,

ˆ B

A

f(x)dl = −
ˆ A

B

f(x)dl (2)

We can also demand oriented surface integrals, so the surface integral
ˆ ˆ

A · n dS (3)

changes sign if we reverse the direction of the normal to the surface. This normal
can be thought of as the cross product of two basis vectors within the surface.
If these basis vectors’ cross product is taken in one order, n has one sign. If the
opposite order is taken then −n results. Similarly, volume integrals change sign
if we change from a right- or left-handed coordinate system.

We can build this alternating sign into our convention for writing differential
forms by introducing a formal antisymmetric product, called the wedge product,
symbolized by ∧, which is defined to give these differential elements the proper
signs. Thus, surface integrals will be written as integrals over the products

dx ∧ dy,dy ∧ dz,dz ∧ dx

with the convention that ∧ is antisymmetric:

dx ∧ dy = −dy ∧ dx

under the interchange of any two basis forms. This automatically gives the right
orientation of the surface. Similarly, the volume element becomes

V = dx ∧ dy ∧ dz

which changes sign if any pair of the basis elements are switched.
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We can go further than this by formalizing the full integrand. For a line
integral, the general form of the integrand is a linear combination of the basis
differentials,

Axdx+Aydy +Azdz

Notice that we simply add the different parts. Similarly, a general surface
integrand is

Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

while the volume integrand is

f (x) dx ∧ dy ∧ dz

These objects are called differential forms.
Clearly, differential forms come in several types. Functions are called 0-

forms, line elements 1-forms, surface elements 2-forms, and volume forms are
called 3-forms. These are all the types that exist in 3-dimensions, but in more
than three dimensions we can have p-forms with p ranging from zero to the
dimension, d, of the space. Since we can take arbitrary linear combinations of
p-forms, they form a vector space, Λp.

We can always wedge together any two forms. We assume this wedge product
is associative, and obeys the usual distributive laws. The wedge product of a
p-form with a q-form is a (p+ q)-form.

Notice that the antisymmetry is all we need to rearrange any combination
of forms. In general, wedge products of even order forms with any other forms
commute while wedge products of pairs of odd-order forms anticommute. In
particular, functions (0-forms) commute with all p-forms. Using this, we may
interchange the order of a line element and a surface area, for if

L = Adx

S = Bdy ∧ dz

then

L ∧ S = (A dx) ∧ (B dy ∧ dz)
= A dx ∧B dy ∧ dz

= AB dx ∧ dy ∧ dz

= −AB dy ∧ dx ∧ dz

= AB dy ∧ dz ∧ dx

= (B dy ∧ dz) ∧ (Adx)
= S ∧ L

but the wedge product of two line elements changes sign, for it

L1 = Adx

L2 = Bdy + Cdz
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then

L1 ∧ L2 = (A dx) ∧ (Bdy + Cdz)
= A dx ∧Bdy +A dx ∧ Cdz

= AB dx ∧ dy +AC dx ∧ dz

= −AB dy ∧ dx−AC dz ∧ dx

= −Bdy ∧Adx− Cdz ∧Adx

= −L2 ∧ L1 (4)

For any odd-order form, ω, we immediately have

ω ∧ ω = −ω ∧ ω = 0

In 3-dimensions there are no 4-forms because anything we try to construct must
contain a repeated basis form. For example

L ∧V = (A dx) ∧ (B dx ∧ dy ∧ dz)
= AB dx ∧ dx ∧ dy ∧ dz

= 0

since dx ∧ dx = 0. The same occurs for anything we try. Of course, if we
have more dimensions then there are more independent directions and we can
find nonzero 4-forms. In general, in d-dimensions we can find d-forms, but no
(d+ 1)-forms.

Now suppose we want to change coordinates. How does an integrand change?
Suppose Cartesian coordinates (x, y) in the plane are given as some functions
of new coordinates (u, v). Then we already know that differentials change ac-
cording to

dx = dx (u, v) =
∂x

∂u
du+

∂x

∂v
dv

and similarly for dy, applying the usual rules for partial differentiation. Notice
what happens when we use the wedge product to calculate the new area element:

dx ∧ dy =
(
∂x

∂u
du+

∂x

∂v
dv
)
∧
(
∂y

∂u
du+

∂y

∂v
dv
)

=
∂x

∂v

∂y

∂u
dv ∧ du+

∂x

∂u

∂y

∂v
du ∧ dv

=
(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
du ∧ dv

= J du ∧ dv

where

J = det
(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
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is the Jacobian of the coordinate transformation. This is exactly the way that
an area element changes when we change coordinates. Notice the Jacobian
coming out automatically. We couldn’t ask for more – the wedge product not
only gives us the right signs for oriented areas and volumes, but gives us the
right transformation to new coordinates. Of course the volume change works,
too.

In eq.(4), showing the anticommutation of two 1-forms, identify the property
of form multiplication used in each step (associativity, anticommutation of basis
forms, commutation of 0-forms, etc.).

Show that under a coordinate transformation

x → x (u, v, w)
y → y (u, v, w)
z → z (u, v, w)

the new volume element is just get the full Jacobian times the new volume form,

dx ∧ dy ∧ dz = J (xyz;uvw) du ∧ dv ∧ dw

So the wedge product successfully keeps track of p-dim volumes and their
orientations in a coordinate invariant way. Now any time we have an integral,
we can regard the integrand as being a differential form. But all of this can
go much further. Recall our proof that 1-forms form a vector space. Thus,
the differential, dx, of x (u, v) given above is just a gradient. It vanishes along
surfaces where x is constant, and the components of the vector(

∂x

∂u
,
∂x

∂v

)
point in a direction normal to those surfaces. So symbols like dx or du contain
directional information. Writing them with a boldface d indicates this vector
character. Thus, we write

A = Aidxi

Let
f (x, y) = axy

Then df = ∂f
∂xdx+ ∂f

∂ydy is a covariant vector with components(
∂f

∂x
,
∂f

∂y

)
Show that this vector is perpendicular to the surfaces of constant f.

Let’s sum up. We have defined forms, have written down their formal prop-
erties, and have use those properties to write them in components. Then, we
defined the wedge product, which enables us to write p-dimensional integrands
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as p-forms in such a way that the orientation and coordinate transformation
properties of the integrals emerges automatically.

Though it is 1-forms, Aidxi that correspond to vectors, we have defined
a product of basis forms that we can generalize to more complicated objects.
Many of these objects are already familiar. Consider the product of two 1-forms.

A ∧B = Aidxi ∧Bjdxj

= AiBjdxi ∧ dxj

=
1
2
AiBj

(
dxi ∧ dxj − dxj ∧ dxi

)
=

1
2
(
AiBjdxi ∧ dxj −AiBjdxj ∧ dxi

)
=

1
2
(
AiBjdxi ∧ dxj −AjBidxi ∧ dxj

)
=

1
2

(AiBj −AjBi) dxi ∧ dxj

The coefficients
AiBj −AjBi

are essentially the components of the cross product. We will see this in more
detail below when we discuss the curl.

1.2 The exterior derivative
We may regard the differential of any function, say f (x, y, z), as the 1-form:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

=
∂f

∂xi
dxi

Since a function is a 0-form then we can imagine an operator d that differentiates
any 0-form to give a 1-form. In Cartesian coordinates, the coefficients of this
1-form are just the Cartesian components of the gradient.

The operator d is called the exterior derivative, and we may apply it to any
p-form to get a (p+ 1)-form. The extension is defined as follows. First consider
a 1-form

A = Aidxi

We define
dA = dAi ∧ dxi

Similarly, since an arbitrary p-form in n-dimensions may be written as

ω = Ai1i2···ipdx
i1 ∧ dxi2 · · · ∧ dxip
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we define the exterior derivative of ω to be the (p+ 1)-form

dω = dAi1i2···ip ∧ dxi1 ∧ dxi2 · · · ∧ dxip

=
∂Ai1i2···ip
∂xj

dxj ∧ dxi1 ∧ dxi2 · · · ∧ dxip

Let’s see what happens if we apply d twice to the Cartesian coordinate, x,
regarded as a function of x, y and z:

d2x = d (dx)
= d (1dx)
= d (1) ∧ dx

= 0

since all derivatives of the constant function f = 1 are zero. The same applies
if we apply d twice to any function:

d2f = d (df)

= d
(
∂f

∂xi
dxi
)

= d
(
∂f

∂xi

)
∧ dxi

=
(

∂2f

∂xj∂xi
dxj

)
∧ dxi

=
∂2f

∂xj∂xi
dxj ∧ dxi

By the same argument we used to get the components of the curl, we may write
this as

d2f =
1
2

(
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
dxj ∧ dxi

= 0

since partial derivatives commute. This result is equivalent to the vector relation

−→∇ ×
(−→∇f) = 0

Prove the Poincaré Lemma: d2ω = 0 where ω is an arbitrary p-form.
Next, consider the effect of d on an arbitrary 1-form. We have

dA = d
(
Aidxi

)
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=
(
∂Ai
∂xj

dxj
)
∧ dxi

=
1
2

(
∂Ai
∂xj
− ∂Aj
∂xi

)
dxj ∧ dxi (5)

We have the components of the curl of the vector A. We must be careful
here, however, because these are the components of the curl only in Cartesian
coordinates. Later we will see how these components relate to those in a general
coordinate system. Also, the covariant components Ai are distinct from the
usual vector components Ai. These differences will be resolved when we give a
detailed discussion of the metric.. Ultimately, the action of d on a 1-form gives
us a coordinate invariant way to calculate the curl.

Finally, suppose we have a 2-form expressed as

S = Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

Then applying the exterior derivative gives

dS = dAz ∧ dx ∧ dy + dAy ∧ dz ∧ dx+ dAx ∧ dy ∧ dz

=
∂Az
∂z

dz ∧ dx ∧ dy +
∂Ay
∂y

dy ∧ dz ∧ dx+
∂Ax
∂x

dx ∧ dy ∧ dz

=
(
∂Az
∂z

+
∂Ay
∂y

+
∂Ax
∂x

)
dx ∧ dy ∧ dz (6)

so that the exterior derivative can also reproduce the divergence.
Fill in the missing steps in the derivation of eq.(6).
Compute the exterior derivative of the arbitrary 3-form, A = f (x, y, z) dx∧

dy ∧ dz.

1.3 The Hodge dual
To truly have the curl in eq.(6) or the curl in eq.(5), we need a way to turn a
2-form into a vector, i.e., a 1-form and a way to turn a 3-form into a 0-form.
This leads us to introduce the Hodge dual, or star, operator, ∗.

Notice that in 3-dim, both 1-forms and 2-forms have three independent com-
ponents, while both 0- and 3-forms have one component. This suggests that we
can define an invertible mapping between these pairs. In Cartesian coordinates,
suppose we set

∗ (dx ∧ dy) = dz
∗ (dy ∧ dz) = dx
∗ (dz ∧ dx) = dy

∗ (dx ∧ dy ∧ dz) = 1

and further require the star to be its own inverse,
∗∗ = 1
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With these rules we can find the Hodge dual of any form in 3-dim.
Show that the dual of a general 1-form,

A = Aidxi

is the 2-form
S = Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

Show that for an arbitrary (Cartesian) 1-form

A = Aidxi

that
∗d∗A = divA

Write the curl of A

curl (A) =
(
∂Ay

∂z
− ∂Az

∂y

)
dx+

(
∂Az

∂x
− ∂Ax

∂z

)
dy +

(
∂Ax

∂y
− ∂Ay

∂x

)
dz

in terms of the exterior derivative and the Hodge dual.
Write the Cartesian dot product of two 1-forms in terms of wedge products

and duals.
We have now shown how three operations – the wedge product ∧, the exterior

derivative d, and the Hodge dual ∗ – together encompass the usual dot and cross
products as well as the divergence, curl and gradient. In fact, they do much
more – they extend all of these operations to arbitrary coordinates and arbitrary
numbers of dimensions. To explore these generalizations, we must first explore
properties of the metric and look at coordinate transformations. This will allow
us to define the Hodge dual in arbitrary coordinates.

1.4 Transformations
Since the use of orthonormal frames is simply a convenient choice of basis, no
information is lost in restricting our attention to them. We can always return
to general frames if we wish. But as long as we maintain the restriction, we
can work with a reduced form of the symmetry group. Arbitrary coordinate
transformations – diffeomorphisms – preserve the class of frames, but only or-
thogonal transformations preserve orthonormal frames. Nonetheless, the class
of tensors is remains unchanged – there is a 1-1, onto correspondence between
tensors with diffeomorphism covariance and those with orthogonal covariance.

The correspondence between general frame and orthonormal frame tensors
is provided by the orthonormal frame itself. Given an orthonormal frame

ea = e a
m dxm

we can use the coefficient matrix e a
m and its inverse to transform back and

forth between orthonormal and coordinate indices. Thus, given any vector in
an arbitrary coordinate basis,

v = vm
∂

∂xm
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we may insert the identity in the form

δmn = e a
n e m

a

to write

v = vnδmn
∂

∂xm

= vne a
n e m

a

∂

∂xm

= (vne a
n ) ea

= vaea

The mapping
va = vne a

n

is invertible because e a
n is invertible. Similarly, any tensor, for example

Tm1...mr
n1...ns

may be written in an orthonormal basis by using one factor of e a
m or e n

a for
each linear slot:

T a1...ar

b1...bs
= Tm1...mr

n1...ns
e a1
m1

. . . e ar
mn

e n1
b1

. . . e ns

bs

Similar expressions may be written for tensors with their contravariant and
covariant indices in other orders.

We showed in Section (3) that the components of the metric are related to
the Cartesian components by

gjk =
∂xm

∂yj
∂xn

∂yk
ηmn

where we have corrected the index positions and inserted the Cartesian form
of the metric explicitly as ηmn = diag(1, 1, 1). Derive the form of the metric in
cylindrical coordinates directly from the coordinate transformation,

x = x (ρ, ϕ, z) = ρ cosϕ
y = y (ρ, ϕ, z) = ρ sinϕ
z = z (ρ, ϕ, z) = z

Notice that the identity matrix should exist in any coordinate system, since
multiplying any vector by the identity should be independent of coordinate sys-
tem. Show that the matrix δi j , defined to be the unit matrix in one coordinate
system, has the same form in every other coordinate system. Notice that the
upper index will transform like a contravariant vector and the lower index like
a covariant vector. Also note that δi j = δ i

j .
Show that the inverse to the metric transforms as a contravariant second

rank tensor. The easiest way to do this is to use the equation

gijg
jk = δki

and the result of exercise 2, together with the transformation law for gij .
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1.5 The Levi-Civita tensor in arbitrary coordinates
The Levi-Civita tensor in Cartesian coordinates is given by the totally antisym-
metric symbol

εi1i2...in

in n dimensions. This symbol, however, is not quite a tensor because under a
diffeomorphism it becomes

εi1i2...in
∂xi1

∂yj1
∂xi2

∂yj2
. . .

∂xin

∂yjn
= Jεj1j2...jn

where
J = det

(
∂xm

∂yn

)
is the Jacobian of the coordinate transformation. The transformation is linear
and homogeneous, but J is a density not a scalar. We can correct for this to
form a tensor by dividing by another density. The most convenient choice is the
determinant of the metric. Since the metric transforms as

g′mn =
∂xi

∂ym
∂xj

∂yn
gij

the determinants are related by

g′ = det g′mn

= det
(
∂xi

∂ym
gij

∂xj

∂yn

)
= det

∂xi

∂ym
deg tij det

∂xj

∂yn

= J2g

Therefore, in the combination

ei...j =
√
gεi...j

the factors of J cancel, leaving

e′i...j =
√
g′εi...j

so that ei...j is a tensor. If we raise all indices on ei1i2...in , using n copies of the
inverse metric, we have

ej1j2...jn =
√
ggj1i1gj2i2 . . . gjninεi1i2...in

=
√
gg−1εj1j2...jn

=
1
√
g
εj1j2...jn

This is also a tensor.
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1.6 Differential calculus
Define a p-form as a linear map from oriented p-dimensional volumes to the
reals:

Λp : Vp → R

Linearity refers to both the forms and the volumes. Thus, for any two p -forms,
Λ1
p and Λ2

p, and any constants a and b,

aΛ1
p + bΛ2

p

is also a p-form, while for any two disjoint p-volumes, V 1
p and V 2

p ,

Λp
(
V 1
p + V 2

p

)
= Λp

(
V 1
p

)
+ Λp

(
V 2
p

)
In Section 3, we showed for 1-forms that these conditions specify the differential
of functions. For p-forms, they are equivalent to linear combinations of wedge
products of p 1-forms.

Let A be a p-form in d-dimensions. Then, inserting a convenient normaliza-
tion,

A =
1
p!
Ai1...ipdx

i1 ∧ . . . ∧ dxip

The action of the exterior derivative, d, on such a p-form is

dA =
1
p!

(
∂

∂xk
Ai1...ip

)
dxk ∧ dxi1 ∧ . . . ∧ dxip

We also defined the wedge product as a distributive, associative, antisymmetric
product on 1-forms:

(
adxi + bdxi

)
∧ dxj = adxi ∧ dxj + bdxi ∧ dxj

dxi ∧
(
dxj ∧ dxk

)
=

(
dxi ∧ dxj

)
∧ dxk

dxi ∧ dxj = −dxj ∧ dxi

A third operation, the Hodge dual, was provisionally defined in Cartesian coor-
dinates, but now we can write its full definition. The dual of A is defined to be
the (d− p)-form

∗A =
1

(d− p)!p!
Ai1...ipe

i1...ip
ip+1...id

dxip+1 ∧ . . . ∧ dxid

Notice that we have written the first p indices of the Levi-Civita tensor in the
superscript position to keep with our convention of always summing an up index
with a down index. In Cartesian coordinates, these two forms represent the same
array of numbers, but it makes a difference when we look at other coordinate
systems.

Differential calculus is defined in terms of these three operations, (∧,∗ ,d) .
Together, they allow us to perform all standard calculus operations in any num-
ber of dimensions and in a way independent of any coordinate choice.
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1.6.1 Grad, Div, Curl and Laplacian

It is straightforward to write down the familiar operations of gradient and curl
and divergence. We specify each, and apply each in polar coordinates, (ρ, θ, z) .
Recall that the metric in polar coordinates is

gmn =

 1
ρ2

1


its inverse is

gmn =

 1
1
ρ2

1


and its determinant is

g = det gmn = ρ2

Gradient The gradient of a function is given by the exterior derivative of a 0
-form,

df =
∂f

∂xi
dxi

Notice that the coefficients are components of a type-
(
0
1

)
tensor, so that if we

want the gradient to be a vector, we require the metric:

[∇f ]i = gij
∂f

∂xj

For example, the gradient in polar coordinates has components

[∇f ]i =

 1
1
ρ2

1




∂f
∂ρ
∂f
∂ϕ
∂f
∂z

 =


∂f
∂ρ

1
ρ
∂f
∂ϕ
∂f
∂z


so

∇f =
∂f

∂ρ
ρ̂+

1
ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
k̂

Divergence The use of differential forms leads to an extremely useful expres-
sion for the divergence – important enough that it goes by the name of the
divergence theorem. Starting with a 1-form, ω = ωidxi, we compute

∗d∗ω = ∗d∗ωidxi

= ∗d
(

1
2
ωie

i
jk

)
dxj ∧ dxk

=
1
2

∗
d
(
ωi
√
ggin

)
εnjkdxj ∧ dxk

=
1
2

∗ ∂

∂xm
(
ωi
√
ggin

)
εnjkdxm ∧ dxj ∧ dxk
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=
1
2

∂

∂xm
(
ωi
√
ggin

)
εnjke

mjk

=
1
2

1
√
g

∂

∂xm
(
ωi
√
ggin

)
εnjkε

mjk

=
1
2

1
√
g

∂

∂xm
(
ωi
√
ggin

)
2δmn

=
1
√
g

∂

∂xm
(
ωi
√
ggim

)
In terms of the vector, rather than form, components of the original form, we
may replace ωi = gijωj so that

∗d∗ω =
1
√
g

∂

∂xm
(
√
gωm) = ∇ · ω

Since the operations on the left are all coordinate invariant, the in the middle
is also. Notice that in Cartesian coordinates the metric is just δij , with de-
terminant 3, so the expression reduces to the familiar form of the divergence
and

∇ · ω =
1
√
g

∂

∂xm
(
√
gωm)

In polar coordinates we have

∇ · ω =
1√
ρ2

∂

∂xm

(√
ρ2ωm

)
=

1√
ρ2

(
∂

∂ρ

(√
ρ2ωρ

)
+

∂

∂ϕ

(√
ρ2ωϕ

)
+

∂

∂z

(√
ρ2ωz

))
=

1
ρ

∂

∂ρ
(ρωρ) +

∂ωϕ

∂ϕ
+
∂ωz

∂z

Curl The curl is the dual of the exterior derivative of a 1-form. Thus, if
ω = ωidxi then

∗dω = ∗ ∂

∂xj
ωidxjdxi

=
(
eji k

∂

∂xj
ωi

)
dxk

= eji kgimg
mn ∂

∂xj
ωndxk

= eji kgim

(
∂

∂xj
(gmnωn)− ωn

∂

∂xj
gmn

)
dxk

= elmkg
lj

(
∂

∂xj
ωm − ωsgsn

∂

∂xj
gmn

)
dxk
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Now observe that

gsn
∂

∂xj
gmn =

∂

∂xj
(gsngmn)− gmn ∂

∂xj
(gsn)

=
∂

∂xj
δms − gmn

∂

∂xj
(gsn)

= −gmn ∂

∂xj
gsn

so that

∗dω = elmkg
lj

(
∂

∂xj
ωm + ωsgmn

∂

∂xj
gsn

)
dxk

=
(
elmkg

lj ∂

∂xj
ωm + ωsejn k

∂

∂xj
gsn

)
dxk

Next consider

ejn k
∂

∂xj
gsn = ejn k∂jgsn

=
1
2
ejn k (∂jgsn − ∂ngsj)

=
1
2
ejn k (∂jgsn − ∂ngsj + ∂sgjn)

= ejn kΓnsj

This combines to

∗dω =
(
elmkg

lj ∂

∂xj
ωm + ωsejn k

∂

∂xj
gsn

)
dxk

=
(
elmkg

lj ∂

∂xj
ωm + ωsejn kΓnsj

)
dxk

= ejmk

(
∂

∂xj
ωm + gnmωsΓnsj

)
dxk

= ejmk
(
∂jω

m + ωsΓm sj

)
dxk

= ejmkDjω
mdxk

=
(
ejmkD

jωm
)
dxk

Therefore, if we raise the free index, the curl is

[∇× ω]i = gik
(
ejmkD

jωm
)

=
1
√
g
εijkDjωk

Also consider

d∗ω = d
(
ei jkωidx

jdxk
)
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= d
(
eijkω

idxjdxk
)

= d
(√
gεijkω

idxjdxk
)

=
∂

∂xm
(√
gωiεijkdxmdxjdxk

)
=

(
eji k

∂

∂xj
ωi

)
dxk

The simplest form computationally uses this to write

∗dω = [∇× ω]i gikdxk

To apply the formula, start with the components of the vector. In our familiar
example in polar coordinates, let

wi = (wρ, wϕ, wz)

The corresponding form has components ωi = gijw
j =

(
wρ, ρ2wϕ, wz

)
. There-

fore, the exterior derivative is

dω = d
(
wρdρ+ ρ2wϕdϕ+ wzdz

)
=

∂wρ

∂ϕ
dϕ ∧ dρ+

∂wρ

∂z
dz ∧ dρ

+
∂

∂ρ

(
ρ2wϕ

)
dρ ∧ dϕ+

∂

∂z

(
ρ2wϕ

)
dz ∧ dϕ

+
∂wz

∂ρ
dρ ∧ dz +

∂wz

∂ϕ
dϕ ∧ dz

=
(
∂

∂ρ

(
ρ2wϕ

)
− ∂wρ

∂ϕ

)
dρ ∧ dϕ+

(
∂wz

∂ϕ
− ∂

∂z

(
ρ2wϕ

))
dϕ ∧ dz

+
(
∂wρ

∂z
− ∂wz

∂ρ

)
dz ∧ dρ

Now the dual maps the basis as

∗dρ ∧ dϕ = e123g33dz =
1
ρ
dz

∗dϕ ∧ dz = e231g11dρ =
1
ρ
dρ

∗dz ∧ dρ = e312g22dϕ = ρdϕ

so that

∗dω =
1
ρ

(
∂

∂ρ

(
ρ2wϕ

)
− ∂wρ

∂ϕ

)
dz +

(
1
ρ

∂wz

∂ϕ
− ρ ∂

∂z
(wϕ)

)
dρ

+ρ
(
∂wρ

∂z
− ∂wz

∂ρ

)
dϕ
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Now, since
∗dω = [∇× ω]i gikdxk

we use the inverse metric on the components of ∗dω to find

∗dω = [∇× ω]i gikdxk

so that with ωi = gijω
j we have

[∇× ω]1 =
1
ρ

∂wz

∂ϕ
− ρ ∂

∂z
(wϕ)

[∇× ω]2 =
1
ρ

(
∂ωρ

∂z
− ∂ωz

∂ρ

)
[∇× ω]3 =

1
ρ

(
∂

∂ρ

(
ρ2wϕ

)
− ∂wρ

∂ϕ

)
Work out the form of the gradient, curl, divergence and laplacian in spherical

coordinates. Express your results using a basis of unit vectors.
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