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Abstract

We derive both Lagrangian and Hamiltonian mechanics as gauge theo-
ries of Newtonian mechanics. Systematic development of the distinct sym-
metries of dynamics and measurement suggest that gauge theory may be
motivated as a reconciliation of dynamics with measurement. Applying this
principle to Newton’s law with the simplest measurement theory leads to
Lagrangian mechanics, while use of conformal measurement theory leads to
Hamiltonian mechanics.

1. Introduction

Recent progress in field theory, when applied to classical physics, reveals a pre-
viously unknown unity between various treatments of mechanics. Historically,
Newtonian mechanics, Lagrangian mechanics and Hamiltonian mechanics evolved
as distinct formulations of the content of Newton’s second law. Here we show
that Lagrangian and Hamiltonian mechanics both arise as local gauge theories of
Newton’s second law.

While this might be expected of Lagrangian mechanics, which is, after all, just
the locally coordinate invariant version of Newton’s law, achieving Hamiltonian
mechanics as a gauge theory is somewhat surprising. The reason it happens has
to do with a new method of gauging scale invariance called biconformal gauging.
The study of biconformal gauging of Newtonian mechanics serves a dual purpose.
First, it sheds light on the meaning in field theory of biconformal gauging, which
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has already been shown to have symplectic structure and to lead to a satisfactory
relativistic gravity theory. Second, we are now able to see a conceptually satisfying
unification of Hamiltonian mechanics with its predecessors.

Beyond these reasons for the study, we find a hint of something deeper. Not
only do many of the mathematical properties of Hamiltonian dynamics emerge
necessarily, but also we are offered a tantalizing glimpse of a new possibility —
this 6-dimensional space appears to be the proper arena for both classical and
quantum physics. While the results presented here are purely classical, we revisit
this possibility in our conclusion. A full discussion of biconformal spaces and
quantum mechanics is given in [1].

Although the present article makes only minor use of relativistic biconformal
spaces, we give a brief account of their history and properties. The story starts
with conformal gauge theories, which are notable for certain pathologies: (1) the
requirement for an invariant action in 2n dimensions to be of n'* order in the
curvature and/or the requirement for auxiliary fields to write a linear action, and
(2) the presence of unphysical size changes. The existence of this alternative way
to gauge the conformal group was first explored by Ivanov and Niederle [2], who
were led to an eight dimensional manifold by gauging the conformal group of a
four dimensional spacetime. They restricted the dependence on the extra four
dimensions to the minimum needed for consistency with conformal symmetry.
Later, Wheeler [3], generalizing to arbitrary dimensions, n, defined the class of
biconformal spaces as the result of the 2n-dimensional gauging without imposing
constraints, showing it to have symplectic structure and admit torsion free spaces
consistent with general relativity and electromagnetism. Wehner and Wheeler
[4] went on to write the most general class of actions linear in the biconformal
curvatures, eliminating problems (1) and (2) above, and showing that the resulting
field equations lead to the Einstein field equations. Unlike previous conformal
gauge theories, this action takes the same form in any dimension.

In the next two sections, we make some observations regarding dynamical laws,
measurement theory and symmetry, then describe the global 15O(3) symmetry
of Newton’s second law and the local SO(4, 1) symmetry of Newtonian measure-
ment theory. In Sec. 4, we give two ways to make these different dynamical and
measurement symmetries agree. After briefly describing our method of gauging
in Sec. 5, we turn to the actual gauging of Newtonian mechanics. In Sec. 6 we
show that the I.SO(3) gauge theory leads, as expected, to Lagrangian mechanics.
This illustrates our method of gauging in a familiar context. Then, in Sec. 7 we
show that biconformal gauging of the SO (4,1) symmetry leads to Hamiltonian



dynamics, including a discussion of multiple particles. In the penultimate section,
we discuss an important question of interpretation, checking that there are no un-
physical size changes. Finally, we end with a brief summary and some observations
about the relationship between biconformal spaces and quantum physics.

2. What constitutes a physical theory?

The relationship of symmetry to the form of physical laws has a long history,
including Galilean relativity, the extended discussion surrounding the transition
from Newtonian to relativistic dynamics, and the elegant theorem of Noether.
Many of these ideas are synthesized by Anderson [5], who makes careful dis-
tinctions between kinematical and dynamical trajectories, their covariance and
symmetry groups, and the measurements that confirm them.

A number of the ideas discussed by Anderson concern us here, but with a
slightly different emphasis. For example, Anderson discusses the class of “kine-
matically possible trajectories” whereas we refer below to the “physical arena”.
Clearly, these are closely related ideas, since a subset of paths in the arena consti-
tutes the set of possible trajectories. Asin [5], we find that symmetry requirements
place a strong restriction on that class or arena. Indeed, we go a step further and
use group theoretic methods to derive the arena from experimentally determined
symmetries.

The class of experimentally determined symmetries is determined by what we
call measurement theory. Quoting [5]:

Every physical theory attempts to associate mathematical quanti-
ties of some kind with the elements of the physical system the theory
is supposed to describe. How one makes this association is one of the
most difficult parts of physics.. ..

Measurement theory is the set of rules we use to accomplish the association
between mathematical quantities present in a dynamical theory and numbers re-
sulting from experiments. We note the distinction between dynamical symmetries
and symmetries implicit in these rules of measurement. Understanding the role
played by each of these will lead us to a deeper understanding of symmetry and
gauge theory, and ultimately brings us back to questions about the arena for
physical theory.



To clarify the difference between dynamical symmetry and measurement sym-
metry, we consider the distinction in three examples: (1) quantum mechanics, (2)
classical mechanics, and (3) special relativity.

First, consider quantum theory where the dynamics and measurement theories
are quite distinct from one another. The dynamical law of quantum mechanics is
the Schrodinger equation, oy

Hy = zhg

This equation gives the time evolution of a state, ¢, but the state has no direct
physical meaning — we require a measurement theory. For this purpose we require
a norm or an inner product on states,

<w|w>:/vw*w i

to give a measurable number. In addition, auxiliary rules for interpretation are
needed. For example, the quantum norm above is interpreted as the probability
of finding the particle characterized by the state v in the volume V. Additional
rules govern measurement of the full range of dynamical variables.

For our second example, we identify these same elements of Newtonian me-
chanics. Newtonian mechanics is so closely tied to our intuitions about how things
move that we don’t usually separate dynamics and measurement as conceptually
distinct. Still, now that we know what we are looking for it is not difficult. The
dynamical law, of course, is Newton’s second law:

dv’
dt
which describes the time evolution of a position vector of a particle. The mea-

surement theory goes back to the Pythagorean theorem — it is based on the line
element or vector length in Euclidean space:

F'=m

ds* = do* +dy* + d2?

= nijdxidmj
where
1
Nij = 1
1



is the Euclidean metric in Cartesian coordinates. It is metric structure that pro-
vides measurable numbers from the position vectors, forces and other elements
related by the dynamical equation. As we shall see below, there are also further
rules required to associate quantities computed from the dynamical laws with
numbers measured in the laboratory.

Finally, the separation between dynamical law and measurement theory in
special relativity is quite similar to that in classical mechanics. The law of motion
is just the four dimensional version of Newton’s second law, while the measurement
theory is now based on the Minkowski line element and inner product,

ds* = —cAdt* + da® + dy? + d2?
= naﬁdxadxﬂ
V-w = naﬁvawﬁ

where a and § now run from 0 to 3.

Once we have both a dynamical law and a measurement theory, we can be-
gin detailed exploration of the physical theory. Generally, this means analyzing
the nature of different interactions and making predictions about the outcomes of
experiments. For these two purposes — studying interactions and making predic-
tions — the most important tool is symmetry. The use of symmetry for studying
interactions follows from the techniques of gauge theory, in which a dynamical
law with a global symmetry is modified to be consistent with a local symmetry
of the same type. This procedure introduces new fields into the theory, and these
new fields generally describe interactions. The use of symmetry for prediction re-
lies on Noether’s theorem, which guarantees a conserved quantity corresponding
to any continuous symmetry. Once we have such a conserved quantity, we have
an immediate prediction: the conserved quantity will have the same value in the
future that it has now.

These three properties — dynamics, measurement, and symmetry — play a role
in every meaningful physical theory. We now revisit our three examples to look
at the available symmetries.

First, we note that in quantum theory both the dynamical law and the mea-
surement theory are invariant under certain multiples of the wave function. The
dynamical law is linear, hence consistent with arbitrary multiples of solutions.
However, because of the derivatives involved in the Schrodinger equation, these
multiples must be global, ¢y — Age¥01p. In contrast to this, the quantum norm is
preserved by local multiples only if the multiple is a pure phase:

Y — @)y



Thus, the dynamical law and the measurement theory have different symmetries.
Of course, U (1) gauge theory and the usual normalization of the wave function
provide one means of reconciling this difference. The reconciliation involves two
ways of modifying the symmetry of the dynamical equation to agree with that
of the measurement theory — first by restriction (fixing Ay to normalize /) and
second by extension (modifying the dynamical law to be consistent with local
U(1) transformations).

Gauging the U(1) phase symmetry plays an extremely important role. By the
general procedure of gauging, we replace global symmetries by local ones, and
at the same time replace the dynamical law by one consistent with the enlarged
symmetry. Well-defined techniques are available for accomplishing the required
change in the dynamical laws. When the gauging procedure is applied to the
phase invariance of quantum field theory, the result is a theory that includes
electromagnetism. Thus, the gauging procedure provides a way to systematically
introduce interactions between particles, i.e., forces.

In our second example, the symmetry of Newtonian mechanics is often taken
to be the set of transformations relating inertial frames. We can arrive at this
conclusion by asking what transformations leave the dynamical equation invariant.
The answer is that Newton’s second law is invariant under any transformation of
the form

rt — Jr o't + g

F' = J

where J* ; 1s a constant, nondegenerate matrix and v* and z) are constant vectors.
A shift in the time coordinate and time reversal are also allowed. If we restrict
J ; to be orthogonal these comprise the Galilean transformations. However, not
all of these are consistent with Newtonian measurement theory. If we ask which of
the transformations above also preserve the Pythagorean norm, we must further
restrict the transformation of 2° to be homogeneous. The combined measurement
and dynamical theories are thus invariant under

 — O jxj
F'— O F

t — L+t

While this brief argument leads us to the set of orthogonal inertial frames, it
is not systematic. Rather, as we shall see, this is a conservative estimate of
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the symmetries that are possible. In particular, the infinitesimal line element is
invariant under general coordinate transformations.

Finally, the relativistic version of Newton’s second law transforms covariantly
under global Lorentz transformations and global translations. In the measurement
theory however, the line element is invariant under general coordinate transfor-
mations. Reconciling this difference by gauging, thereby making the dynamical
laws invariant under local Lorentz transformations, provides a successful theory of
gravity — general relativity. As we shall see, gauging works well in the Newtonian
case too. Although we will not look for new interactions in the Newtonian gauge
theory (such as Euclidean gravity), we will see that gauging leads directly to both
the Lagrangian and Hamiltonian formulations of mechanics.

In the next sections, we treat the symmetries of Newtonian mechanics in a
more systematic way. In preparation for this, recall that in the quantum phase
example, we both restricted and extended the dynamical law to accommodate a
symmetry of the measurement theory, but arriving at the inertial frames for the
Newtonian example we only restricted the symmetry of the dynamical law. This
raises a general question. When the dynamical law and measurement theory have
different symmetries, what do we take as the symmetry of the theory? Clearly, we
should demand that the dynamical equations and the measurement theory share
a common set of symmetry transformations. If there is a mismatch, we have three
choices:

1. Restrict the symmetry to a subset shared by both the dynamical laws and
the measurement theory.

2. Generalize the measurement theory to one with the same symmetry as the
dynamical law.

3. Generalize the dynamical equation to one with the same symmetry as the
measurement theory.

We annunciate and apply the Goldilocks Principle: Since we recognize that
symmetry sometimes plays an important predictive role in specifying possible
interactions, option (1) is too small. It is unduly restrictive, and we may miss
important physical content. By contrast, the symmetry of measurement is too
large for option (2) to work — inner products generally admit a larger number of
symmetries than dynamical equations. Option (3) is just right: there are general
techniques for enlarging the symmetry of a dynamical equation to match that of



a measurement theory. Indeed, this is precisely what happens in gauge theories.
The extraordinary success of gauge theories may be because they extend the
dynamical laws to agree with the maximal information permitted within a given
measurement theory.

We will take the point of view that the largest possible symmetry is desirable,
and will therefore always try to write the dynamical law in a way that respects
the symmetry of our measurement theory. This leads to two novel gaugings of
Newton’s law. In the next section we look in detail at two symmetries of the
second law: the usual Euclidean symmetry, 7S0(3), and the SO(4, 1) conformal
symmetry of a modified version of Newton’s law. Each of these symmetries leads
to an interesting gauge theory.

3. Two symmetries of classical mechanics

In this section we first find the symmetry of Newton’s second law, then find the
symmetry of Newtonian measurement theory. We conclude the section with some
observations on the nature of these symmetries and the relationship between them.

3.1. Symmetry of the dynamical equation

Newton’s second law p
v
F=m— 3.1
m (3.1)

has several well-known symmetries. For completeness, the point symmetries leav-
ing eq.(3.1) invariant are derived in Appendix 1. The result is that two allowed
coordinate systems must be related by a constant, inhomogeneous, general linear
transformation, together with a shift (and possible time reversal) of ¢ :

" o= JTa" + gt + xf (3.2)
t = t+1, .
Fmo= JmEm (3.4)

where J" is any constant, non-degenerate matrix, vy* and ' are arbitrary con-
stant vectors, and t, is any real constant. Notice that, setting e* = |det (J™)],
Newton’s second law transforms covariantly with respect to global rescaling of
units, ™ — e*z™. We can consider scalings of the other quantities (F* and t) as
well.



Eqgs.(3.2-3.4) gives a 16-parameter family of transformations: nine for the in-
dependent components of the 3 x 3 matrix J, three for the boosts v, three more
for the arbitrary translation, z', and a single time translation. The collection of
all of these coordinate sets constitutes the maximal set of inertial systems. This
gives us the symmetry of the dynamical law.

3.2. Symmetry of Newtonian measurement theory

Newtonian measurement theory begins with the Pythagorean theorem as embod-
ied in the line element and corresponding vector product

ds* = da® + dy* + dz* = n;;da’da’ (3.5)
vVe-w = nijviwj
The line element is integrated to find lengths of curves, while the dot product
lets us find components of vectors by projecting on a set of basis vectors. The
symmetry preserving these is SO(3), the invariance group of the Euclidean metric
n;;- Without introducing a connection, this group must be global to preserve the
Euclidean vector space . However, the infinitesimal line element is preserved by
general coordinate transformations, equivalent to invariance under local rotations
and translations — the local inhomogeneous orthogonal group, I.SO(3). It is this
difference between global and local invariance that is addressed by gauge theory.
Regardless of whether the symmetry is local or global, a line element or an
inner product is not a complete theory of measurement. We must be specific about
how the numbers found from the inner product relate to numbers measured in the
laboratory.
Suppose we wish to characterize the magnitude of a displacement vector, dx,
separating two particles. Using the Euclidean line element,

ds* = n,dz'da’ (3.7)

The result, to be meaningful, must still be expressed in some set of units, say,
meters or centimeters. The fact that either meters or centimeters will do may be
expressed by saying that we work with an equivalence class of metrics differing by
a positive multiplier. Thus, if we write length ds in meters as ds,,, then to give
the length ds.,, in centimeters we write

dSem = 10%ds,,



A quantity which is invariant under such changes of units is the ratio of any two

lengths,
dslm dslcm

dSQm ds?cm

Transformations which leave such ratios invariant produce no measurable physical
effect. Associating the scale factor with the metric, we regard all metrics of the
form

9ij = 62/\77@'
as equivalent. The factor e?* is called a conformal factor; two metrics which differ
by a conformal factor are conformally equivalent.
The symmetry group which preserves conformal equivalence classes of metrics

is the conformal group, locally isomorphic to SO(4,1). The (global) conformal
group comprises of the following transformations:

A

O! jxj Orthogonal transformation
i '+ a’ Translation
Y=93 o Dilatation

Tovarizez  Opecial conformal transformation

The first three of these are familiar symmetries. We now discuss each of the
conformal symmetries, and the relationship between the SO(4,1) symmetry of
classical measurement theory and the I50(3) symmetry of the dynamical law.

3.3. Relationship between the dynamical and measurement symmetries

Newton’s second law, the dynamical equation of classical mechanics, is invari-
ant under global changes of inertial frame. Newtonian measurement theory, by
contrast, is invariant under the corresponding conformal group, SO (4,1). For
the invariance of ratios of infinitesimal line elements the symmetry may be lo-
cal. Before seeking agreement between these different symmetries, we consider
the relationship between the inertial transformations and global SO (4,1). We
also introduce some nomenclature relevant to dilatations and special conformal
transformations.

3.3.1. Orthogonal transformations and translations

As expected, there are some simple relationships between the symmetries of New-
ton’s second law and the conformal symmetries of the Euclidean line element.
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Of the global conformal transformations, the first three — orthogonal transfor-
mations, translations, and dilatations — all are allowed transformations to new
inertial frames. We only need to restrict the global general linear transformations
J™ of egs.(3.2 ) and (3.4) to orthogonal, O™, for these to agree, while the vf't + '
part of eq.(3.2) is a parameterized global translation.

3.3.2. Dilatations

For dilatations we see the invariance of Newton’s second law simply because the
units on both sides of the equation match:

kg-m

F = L
m

[ma] = kg-?

No matter how we scale mass, length and time, Newton’s law is preserved. Notice
that the conformal transformation of units considered here is completely different
from the conformal transformations (or renormalization group transformations)
often used in quantum field theory. The present transformations are applied to all
dimensionful fields, and it is impossible to imagine this simple symmetry broken.
By contrast, in quantum field theory only certain parameters are renormalized
and there is no necessity for dilatation invariance.

To keep track of dilatations, it is useful to choose a uniform way to specify
how quantities scale. Classical mechanics does not have any natural fundamental
constants which could be used to convert mass and time units into units of length
as we might expect from a totally geometric theory. Such constants do exist in
relativity ( ¢ converts time to a length) and quantum mechanics ( % converts
mass to (length)_l). Nonetheless, as we shall see, gauging the conformal group
expresses phase space variables in geometric units, and it is therefore useful to
think of all units as powers of length. To do this without using ¢ or A is simply
a matter of choosing an arbitrary velocity, say vy = 1=, and an arbitrary unit
of inverse action, for example g = 1 k;i;z. Using these, all M K.S units are easily
rendered as lengths. The arbitrary constants vy and g drop out of any physical
prediction. Notice, however, that the existence of i and c in relativistic quantum
theories suggests that a relativistic quantum theory in biconformal space could be
naturally geometric.

Given an arbitrary dynamical variable A with MKS units

[A] = m® (kg)” (sec)”
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we immediately have
[A (avovo)” Ug] = m® o

Then with the units of A expressed as (length)” with k = a— 3+, we immediately
know that under a dilatation of the metric by a factor e2*, A will change according

to
A — A

The number k£ is called the conformal weight of A. For example, force has weight
k = —2 since we may write

Qpl _ L

Vo [2

The norm of this vector then transforms as

&%)

Qo _
—F| — e
Vo

|

With this understanding, we see that Newton’s law, eq.(3.1), transforms covari-
antly under global dilatations. With force as above and

lagmv] =
il -

the second law has units (length) ™ throughout:

(CERCI FE

Under a global dilatation, we therefore have

1
1
1
1

o 1d 1d
e 2N <U_§) F = @_>‘U—OE (e_)‘ogomv) = 6_2AU_OE (OéomV) (3.9)

Newton’s law is therefore globally dilatation covariant, of conformal weight —2.
Notice that the arbitrary constants cancel.
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3.3.3. Special conformal transformations

The story is very different for special conformal transformations. These surprising
looking transformations are translations in inverse coordinates. Let a single “point
at infinity”, w, provide a one point compactification of R3. Such an added point
has no measurable consequence since the time required to reach it at any finite
velocity is infinite, and any information coming from such a point requires an
infinite amount of time to reach us. Then we may define the unique inverse to
any coordinate x’ as
7

T2
where the origin and w are inverse to one another (see Appendix 2). Note that
inversion is a discrete conformal transformation since

. 1\?
dy'dy; = (ﬁ) dz'dz;

Sandwiching a translation between two inversions is therefore also conformal, and
gives the general form of a special conformal transformation:

T’ o T’ + 22
i

22 2 1 + 2btx; + b2

The effect of a special conformal transformation on the line element is now easy
to compute. Letting ° be inverse to 2' and setting

w’L — y2+bl
1)

s oY
w

the transformation 2° — 2* is a special conformal transformation. Then we have

. 1)\?
ndz'dz’ = (—2) nwdwzdw]

) nydy' dy’

:
(2 () e
<

2
> Nij de'dz?

1— 2xlb + b222
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so the metric transforms according to
n; — (1—2bw; + b2x2)_2 Nij (3.10)

and the combined transformation is therefore conformal. This time, however,
the conformal factor is not the same at every point. These transformations are
nonetheless global because the parameters b’ are constant — letting b° be an arbi-
trary function of position would enormously enlarge the symmetry in a way that
no longer returns a multiple of the metric.

In its usual form, Newton’s second law is not invariant under global special
conformal transformations. The derivatives involved in the acceleration do not
commute with the position dependent transformation:

—2xbx) (20 *)\(ﬁ)li *A(bvx)a_xi J 3.11
e <Uo) #e i e 8qjao?”rw (3.11)

and the dynamical law is not invariant.

4. A consistent global symmetry for Newtonian mechanics

Before we can gauge any symmetry of Newtonian mechanics, we face the issue
described in the second section: our measurement theory and our dynamical
equation have different symmetries. The procedure in Newtonian mechanics is
to restrict to the intersection of the two symmetries, retaining only global transla-
tions and global orthogonal transformations, giving the inhomogeneous orthogonal
group, 1.SO(3). Since 1.SO(3) lies in the intersection of the symmetries of the dy-
namical law and the measurement theory, it can be gauged immediately to allow
local SO(3) transformations. However, in keeping with our (Goldilocks) principal
of maximal symmetry, and noting that the conformal symmetry of the measure-
ment theory is larger than the Euclidean symmetry of the second law, we should
gauge SO(4,1). Before we can do this, we must rewrite the second law with global
conformal symmetry, SO(4, 1). This extension is the subject of the present section.
The global conformal symmetry may then be gauged to allow local SO(3) x R*
(homothetic) transformations. In subsequent sections we will carry out both the
ISO(3) and SO(4,1) gaugings.
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4.1. The conformal connection

Our goal is now to write a form of Newton’s second law which is covariant with
respect to global conformal transformations. To begin, we have the set of global
transformations

/-0
yz — gt +CLZ

i A
Yy = ex

A xt + 2%b . «
yz — — ﬁfl (.Z'l _‘_x2b7,)

14+2b- 2+ b2x2

As seen above, it is the derivatives that obstruct the full conformal symmetry
(see eq.(3.11)). The first three transformations already commute with ordinary
partial differentiation of tensors because they depend only on the constant pa-
rameters O° I a’ and \. After a special conformal transformation, however, the
velocity becomes a complicated function of position, and when we compute the

acceleration, _ . . A
i v 8(7/' d*z - 9, 8y’.vj
dt — OxI dt? Oxk \ OxJ
the result is not only a terrible mess — it is a different terrible mess than what we
get from the force (see Appendix 3). The problem is solved if we can find a new
derivative operator that commutes with global special conformal transformations.
The mass also poses an interesting problem. If we write the second law as

d
F=—(mv 4.1
= (mv) (1)
we see that even “constant” scalars such as mass pick up position dependence and

contribute unwanted terms when differentiated

a

m — e @y

om — e *@am — e Dma\

We can correct this problem as well, with an appropriate covariant derivative.

To find the appropriate derivation, we consider scalars and vectors, with dif-
ferentiation of higher rank tensors following by the Leibnitz rule. For scalars of
conformal weight n we require

D5y = OxS(n) + NSy ik
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while for vectors of weight n we require a covariant derivative of the form,
Dkvén) = Gkvén) + v{n)Aék + nvfn)Ek

where A;k and X; remain to be determined.
Treating the scalar case first, we easily find the required transformation law
for ;. Transforming s(,) we demand covariance,

Désl(n) = (Dks(n)>,

where
Sw = €5
Dislyy = €0k (€"5(m) +n (€"50m) Ty
and
(Disy) = e (Disiw)

Since derivatives have conformal weight —1, we expect that!
n=n-1
Imposing the covariance condition,

€70 (€ s0m) +n (¢Ms) B = € (Disi)

e (s(n)nak)\ + aks(n)) + ns(n)E?c = ¢ (8k3(n) + ns(n)Ek)

e_’\s(n)nﬁk)\+ns(n)2§€ = e_)‘ns(n)Ek

or since this must hold for all s(,),
Z;C = (Ek - 6k)\)

Since we assume the usual form of Newton’s law holds in some set of coordinates,
Y, will be zero for these coordinate systems. Therefore, we can take ¥ to be zero
until we perform a special conformal transformation, when it becomes —ne 9, \.

'In field theory, the coordinates and therefore the covariant derivative are usually taken to
have zero weight, while dynamical fields and the metric carry the dimensional information. In
Newtonian physics, however, the coordinate of a particle is a dynamical variable, and must be
assigned a weight.
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Notice that since A is constant for a dilatation, Y, remains zero if we simply
change from furlongs to feet.

Since a special conformal transformation changes the metric from the flat
metric 7,; to the conformal metric

9ij = 62/\(95)77”‘ = 5_2771‘]‘ (4.2)

where
B=1+2b -x+b%2? (4.3)

we need a connection consistent with a very limited set of coordinate transforma-
tions. This just leads to a highly restricted form of the usual metric compatible
Christoffel connection. From eq.(4.2) we compute immediately,

i = 59" Gmik + Gmkj = Gikm)
= Uim (nm])‘,k + nmk:)\,j - njk)‘ﬂﬂ) (44)
where
Ap = —5715,1@

Notice that A;k has conformal weight —1, and vanishes whenever b; = 0.
We can relate ¥ directly to the special conformal connection A;k The trace
of Al is

so that
X = =g
1
= ——A
3

The full covariant derivative of a vector of conformal weight n, may therefore be
written as

Dyl = Oty + iy (A;k - gAch}) (4.5)

where A}, is given by eq.(4.4).
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4.2. Covariantly constant masses

Extending the symmetry of classical mechanics to include special conformal trans-
formations introduces an unusual feature: even constants such as mass may appear
to be position dependent. But we are now in a position to say what it means for
a scalar to be constant. Since mass has conformal weight —1, we demand

1

That is, constant mass now means covariantly constant mass.
This equation is always integrable because A; is curl-free,

Ak,m - Am,k =3 ()\,km - A,mk) =0

Integrating,

m = mge_”\

Any set of N masses, {m(l), M2y, - - - MY N)} , in which each element satisfies the
same condition,

ka(i):(), iZl,...,N
gives rise to an invariant spectrum of N — 1 measurable mass ratios,
my ma mn
Mrp=<—=1,—,..., —
ma mq ma

1
aguomi

since the conformal factor cancels out. Here we have arbitrarily chosen as

our unit of length.

4.3. The conformally covariant second law

We can also write Newton’s second law in a covariant way. The force is a weight
—2 vector. With the velocity transforming as a weight zero vector and the mass as
a weight —1 scalar, the time derivative of the momentum now requires a covariant
derivative,

D i d . . . 1 .
% = (mvl) + mv”va}k + gmvzvk/\k
Then Newton’s law is D
F' = Dr (mvl)
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To see how this extended dynamical law transforms, we check conformal weights.
The velocity has the dimensionless form
1 dx'
Vo dt

The covariant derivative reduces this by one, so the acceleration has conformal
weight —1. The mass also has weight —1, while the force, as noted above, has
weight —2. Then we have:
~ D .
F' = — (m?')
Dt
The first term in the covariant time derivative becomes
d ,d y’

& sy - j
7 ) = ey (e maxj“)

oy Oyt d , _ dz* 9 [ _, 0y
— 22 Y j A jor A
© Ouddt (o) + €™mw dt Ox* (6 8:&)

The final term on the right exactly cancels the inhomogeneous contributions from
A;k and Ay, leaving the same conformal factor and Jacobian that multiply the

force: Ny oy (d( )
Y e muv’
—.Fj - e
¢ o ¢ ( dt
The conformal factor and Jacobian cancel, so if the globally conformally covariant
Newton’s equation holds in one conformal frame, it holds in all conformal frames.

The transformation to the conformally flat metric

. 1
+mu™R A+ gmvjvak)

gij = €”ny; = By

does not leave the curvature tensor invariant. This only makes sense — just as
we have an equivalence class of metrics, we require an equivalence class of curved
spacetimes. Thought the curvature for g;; is well known (see, eg. Hawking and
Ellis [6]) we provide the simple calculation in Appendix 4. Since the acceleration
is the variation of the line element, force-free motion is represented by geodesics
in any of these physically equivalent geometries.

We now want to consider what happens when we gauge the symmetries as-
sociated with classical mechanics. In the next section, we outline some basics of
gauge theory. Then in succeeding sections we consider two gauge theories associ-
ated with Newtonian mechanics. First, we gauge the Euclidean /.50(3) invariance
of F' = ma’, then the full SO(4,1) conformal symmetry of F' = 2 (muv').
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Before performing these gaugings, we digress to describe the quotient group
method of gauging.

5. Gauge theory

Here we briefly outline the quotient group method of gauging a symmetry group.
For internal symmetries such as the U(1) symmetry of electromagnetism the quo-
tient method may be used, but there are simpler techniques. However, for gravi-
tational or other gauge theories that involve construction of a physical space the
quotient method is necessary. The method may be used, for example, to construct
the Riemannian geometries of general relativity from the quotient of the Poincaré
group by its Lorentz subgroup. We require a similar construction of Euclidean
3-space and a symplectic 6-space for 1SO(3) and SO(4, 1), respectively.
The general case begins with a Lie group, G, and its Lie algebra

[Ga, Gp] = cup” Go

Suppose further that G has a subgroup H, such that H itself has no subgroup
normal in G. Then the quotient G/H is a manifold with the symmetry group H
acting independently at each point (technically, a fiber bundle). H is now called
the isotropy subgroup. The manifold inherits a connection from the original group,
so we know how to take H-covariant derivatives. We may then generalize both
the manifold and the connection, to arrive at a class of manifolds with curvature,
still having local ‘H symmetry. We consider here only the practical application of
the method. Full mathematical details may be found, for example, in [7], [8], [9].

The connection is developed as follows. Rewriting the Lie algebra in the dual
basis of Lie algebra valued 1-forms defined by

<GA, wB> = (55
we find the Maurer-Cartan equation for G,

1
dw® = —§CABC(.|JA A w?
This is fully equivalent to the Lie algebra above, with d?> = 0 giving the Jacobi
identity. Now consider the quotient of G by H. The Maurer-Cartan equation

has the same appearance, except that now all of the connection 1-forms w* are
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regarded as linear combinations of a smaller set spanning the cotangent space of
the quotient manifold.
In slightly more detail, let the Lie algebra of H have commutators

[Ha, Hy) = ¢y, “He

then the Lie algebra for G may be written as

[GOH Gﬁ] = CaBpGP + CaﬁaHa
[GOH HG] = CaapGﬂ + Caa be
[Ha, Hy] = ¢, “He

where a and a together span the full range of the indices A. Because H contains
no normal subgroup of G, the constants c,,” are nonvanishing for some « for all
a. The Maurer-Cartan structure equations take the corresponding form

1 1
dw” = —§caﬁpwa Aw? — §caa’)wa A w? (5.1)
a 1 a , B 1 a, o b 1 a, b c
dw” = ~5Cap" W A w ~ 5l W N w ~ 5Ch W A w (5.2)

and we regard the forms w® as linearly dependent on the w®,

The forms w® span the spaces cotangent to the base manifold and the w® give an
H-symmetric connection.

Of particular interest for our formulation is the fact that eq.(5.1) gives rise to
a covariant derivative. Because H is a subgroup, dw” contains no term quadratic
in w?, and may therefore be used to write

0=Dw =dw’ +w*ANw, *
with
This expresses the covariant constancy of the basis. As we shall see in our SO(3)
gauging, this derivative of the orthonormal frames w? is not only covariant with

respect to local H = SO (3) transformations, but also leads directly to a covariant
derivative with respect to general coordinate transformations when expressed in
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a coordinate basis. This is the reason that general relativity may be expressed
as both a local Lorentz gauge theory and a generally coordinate invariant theory,
and it is the reason that Lagrangian mechanics with its “generalized coordinates”
may also be written as a local SO(3) gauge theory.

Continuing with the general method, we introduce curvature by changing the
connection. This means that the Maurer-Cartan equations are no longer satisfied,
but gain additional terms,

1
dw’” = ~3 aﬁ”wa/\wﬁ—§cm”wa/\w“+Rp
a 1 a « B 1 a, b 1 a, b c a
dw — _§CC“B w” A w —§Cab w- Aw _50},0 w Aw +R (53)
where
a 1 a « /3
1
_ I pP o B
R = 2R ap@W” N w

are 2-forms. These 2-forms are quadratic in the basis forms w® if and only if they
describe curvature of the quotient manifold and not the entire original group. In
a physical theory, R* and R’ are specified by some set of field equations, and
the modified connection is found by solving egs.(5.3). Since eqgs.(5.3) describe
only local structure, we may allow any manifold consistent with the modified
connection.

We illustrate with the Poincaré group. The quotient of the Poincaré group by
the Lorentz group is the manifold R*. The generators of the Poincaré Lie algebra
satisfy

1 C a ac ac a C
(M, M ] = _§<5bM a— N Myg — g M + 65 M, ©)
a C 1 ac C a
(M, P] = 5(77 P, — 0, P*)
[P, P'] = 0

where the Lorentz subgroup is generated by the M“ ,. Defining dual 1-forms w®
and e®, the Maurer-Cartan structure equations take the form

C

a a
dw” , = W jAw

de" = e’ Aw",

C
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and regarding the connection forms w® , as linear combinations of the cotangent
basis e“,
wa b — wa bCeC

the system describes a local Lorentz connection on Minkowski spacetime. The
connection forms w® , comprise the spin connection and the set of basis forms e is
called the solder form. By changing the connection (and the manifold, if desired),
the Maurer-Cartan equations generalize to include the Riemann curvature 2 -form,
R* ,, and the torsion 2-form, T,

dwab = wc b/\wa C+Rab

de” = e Aw” ,+T°

If the torsion is zero, these equations describe an arbitrary Riemannian geometry.
General relativity follows by setting T® = 0 and imposing the Einstein equation
on R* ;. The metric may be found algebraically from the components of e®.

Our gaugings of Newtonian theory below will further illustrate the method,
although we will not generalize to curved spaces or different manifolds. As a
result, the structure equations in the form of eqgs.(5.1, 5.2) describe the geometry
and symmetry of our gauged dynamical law.

6. A Euclidean gauge theory of Newtonian mechanics

We begin by gauging the usual restricted form of the second law, using the Euclid-
ean group as the initial global symmetry. Just as gauging the Poincaré group of
flat spacetime leads to the generally coordinate invariant arena for general rel-
ativity, the result of the Euclidean gauging is the general coordinate invariant
form of Newton’s law, i.e., Lagrangian mechanics. While the result is not in itself
surprising, it provides a new route to familiar results. More importantly, it shows
our method of construction in a familiar context, before we apply it to conformal
transformations and find an unexpected result.
The familiar form (see Appendix 5) of the Lie algebra of the Euclidean group,

iso(3), is

[Ji, Ji] = ey "

[Ji, Pl = €ij Py

[PZ’P]] =0
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Using the quotient group method, we choose so(3) as the isotropy subgroup. Then
introducing the Lie algebra valued 1-forms w' dual to .J; and e’ dual to P; we write
the Maurer-Cartan structure equations

dw™ = —%% MWl = ~ 5 Ml w?
de™ = —¢; Mwlel = —&; Mw'el
Defining
wmn = wkgk mn
wk — %gk mnwmn

these take a form similiar to the structure equations for general relativity,

dw™ = wmw, " (6.1)

de” = éefw, ™ (6.2)

with w™” the spin connection and e the dreibein. These equations are equivalent
to the commutation relations of the Lie algebra, with the Jacobi identity following
as the integrability condition d* = 0, i.e.,

dZw™ = d(wmjwj ”) :dwmjwj ”—wmjdwj "=

d’e” = d(w™e") =dw™ " —w" .de* =0

Eqgs.(6.1) and (6.2) define a connection on a three dimensional (flat) manifold
spanned by the three 1-forms ™. We take w™” to be a linear combination of the
e™. This completes the basic construction.

The equations admit an immediate solution because the spin connection, w™"
is in involution. The 6-dimensional group manifold therefore admits coordinates
y' such that

wmn — wmn adya

Here we use Latin indices for indices in the orthonormal basis €™ and Greek indices
for the coordinate basis. By the Frobenius theorem, there are submanifolds given
by y“ = const. On these 3-dimensional submanifolds, w™" = 0 and therefore

de” = w™ " =0
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with solution

e =0 dz”
for an additional three coordinate functions x®. This solution gives Cartesian
coordinates on the y* = const. submanifolds. Identifying these manifolds as
copies of our Euclidean 3-space, we are now free to perform an arbitrary rotation
at each point.

Performing such local rotations on orthonormal frames leads us to general
coordinate systems. When we do this, the spin connection w™" takes the pure
gauge form

W™ = — (dO™ ) O
where O™ ; () is a local orthogonal transformation and O7" (x) its inverse. Then
e’ provides a general orthonormal frame field in the locally rotated basis,

_ 7 «@
e =e, 'dz

The coefficients e, * (z) may be determined once we know O™ ; ().

The second Maurer-Cartan equation gives us a covariant derivative as follows.
Expand any 1-form in the orthonormal basis,

vV = ;e
Then we define the covariant exterior derivative via
(Dv;) e’ = dv
=d (viei)
= due' + v;de’
= (dvk — VW, ’) et

Similar use of the product rule gives the covariant derivative of higher rank ten-
sors. This local SO (3)-covariant derivative of forms in an orthonormal basis is
equivalent to a general coordinate covariant derivative when expressed in terms
of a coordinate basis. We see this as follows.

Rewriting eq.(6.2) in the form

de' +efw’ |, =0
we expand in an arbitrary coordinate basis, to find
dz* Ada” (Daey "+e, W' 45) =0
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The term in parentheses must therefore be symmetric:
Oty "+ ey "wiy =Thy =T7,

Writing
Ba = €4 Tga
we define the covariant constancy of the basis coefficients,

Doey "= 0aey "+e, "wig—e, ThH, =0 (6.3)
Eq.(6.3) relates the SO(3)-covariant spin connection for orthonormal frames to the
Christoffel connection for general coordinate transformations. Next, note that the

covariant derivative of the orthogonal metric n = diag(1,1,1) is zero,

Danab = 80477(11) — Ney w; - nacwg
_ncbwg - nacwg
=0

where the last step follows by the antisymmetry of the SO(3) connection. Since
the inverse orthogonal metric n% is given by the linear inner product of two basis
1-forms, we have

Napb = e’ e

= e, ‘eg bde® - da”

Let the inverse to e, * be written as e, ®, and write the inverse coordinate metric
as the inner product of coordinate basis forms

¢ = dz® - da?

Then we have the relationship between the coordinate and orthonormal forms of
the inverse metric and metric,
gaﬁ = e aeb /377ab
a
b
Jop = TNapCa aeﬂ

The covariant constancy of the coordinate metric follows immediately,
Dag,uu = D, (nabeu aev b) =0
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This is inverted in the usual way to give the Christoffel connection for SO(3),

I = %gaﬁ (980 + Govp — Gur) (6.4)
Thus, our solution for the solder form and spin connection (e*, w® ;) lead us to
the Chrostoffel connection, explicitly establishing the relationship between dif-
feomorphism invariance and local SO (3) invariance. The Christoffel connection
may also be found directly from eq.(6.3) using g,, = 7€, “e, . Thus, there
is little practical difference between the ability to perform local rotations on an
orthonormal frame field, and the ability to perform arbitrary transformations of
coordinates. It is just a matter of putting the emphasis on the coordinates or
on the basis vectors (see [10]). It is this equivalence that makes the SO(3) gauge
theory equivalent to the use of “generalized coordinates” in Lagrangian mechanics.

Since Newtonian 3-space is Euclidean and we have not generalized to curved
spaces, the metric is always just a diffeomorphism away from orthonormal, that
is,

ay”
a — J a —
Ca @ oxr®
. aya ayb
Gap = Nap€q eﬁ b= Mab O 81’6 (65)

and the connection takes the simple form

N or® a2ya
Puy - _a_ya axuaxy (6.6)

which has, of course, vanishing curvature. Notice that (e®,w® ) or equivalently,
(gag, FZ‘V), here describe a much larger class of coordinate transformations than
the global conformal connection A;k of Sec. 4. The connection of eq.(6.6) gives a
derivative which is covariant for any coordinate transformation.

This completes our description of Euclidean 3-space in local SO(3) frames or
general coordinates. We now generalize Newton’s second law to be consistent with
this enhanced symmetry.

6.1. Generally covariant form of Newton’s law

The generalization of Newton’s second law to a locally SO(3) covariant form of
mechanics is now immediate. We need only replace the time derivative by a

27



directional covariant derivative,
F* = v’ Dg (mv®)
where
Dgv® = 9g0% +0*T4 (6.7)

and I'; given by eq.(6.6 ). This is the principal result of the the SO(3) gauging.

If F* is curl free, then it may be written as minus the contravariant form of
the gradient of a position-dependent potential, V' (z%),
ov
oxP

and the covariant second law may be written as

Fe — _gaﬂ

ov
B o BB __qaB 77
0”0 (mv®) + mut T, = —g 57
This result agrees with that of ref. 5.

Continuing, we expand the connection in terms of the metric,

ov

VP05 (mv®) + mo*°T, = —g“ﬁw

1 ov
B8 a - w,B av _ — _ 9B

v 0p (mv®) + oMUty (i, + G — Jupw) 9 5.8

av B B av 1 B av af ov

g guuv 85 (mvlt) + mvtv 9 Guup — imvﬂv 9 Gusy = —49 @
1 ov
0?05 (Mg, ") — §mv“vﬁgug7y = o

B H 0 1 Ko, B
0705 (mg,, ") = 5 \ MV U G — Vv

Defining the kinetic energy

1
T = §mga51}avﬁ

and recognizing that
oT

v
the diffeomorphism invariant form of the second law may be written as

d (0T 9,
dt <8v”> - Oav (T=V)
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Finally, since the potential is independent of the velocity, we may set

L=T-V

da(ory_ oL
dt \ Ov~ or®

This, of course, is the Euler-Lagrange equation. This argument provides a deriva-
tion of the usual form of the classical Lagrangian,

to get

1 .
L=T-V = §mgjkvjvk—V

from the gauge principle, and shows that the covariant form of the law is the
extremum of a functional,

S:/(T—V)dt

Thus, 1SO(3) gauge theory has led us to Lagrangian mechanics. The deriva-
tion of the form of the classical Lagrangian and its variational character as conse-
quences of gauge theory are the central results of this section. These results are
expected since Lagrangian mechanics was formulated in order to allow “general-
ized coordinates”, i.e., diffeomorphism covariant equations of motion.

6.2. Multiple particles

We now generalize these results to multiple particles. In the standard treatment,
the Lagrangian for many particles is the sum of the individual single-particle
kinetic terms together with the multiparticle potential. We show that the same
result follows from gauge theory. We conclude with an amusing proof regarding
the additivity of the multiparticle action.

6.2.1. Generalization to multiple particles

To treat the case of multiple particles, we may start again with Newton’s second
law, but this time we assume there are N particles. The forces on the various
particles arise as the gradient of a potential V' which may depend on the positions

of all N particles, V =V (37?1)7 o ,fo)) Therefore, with A = 1,..., N, the
forces may be written covariantly as

ov

Fe. = — ab
(4) g b
ax( A)
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As we showed above, the acceleration of the A™ particle is written covariantly as

a _ B o Ié] a
aa) = U(A)aﬁv(A) + U?A)U(A) o

where '} is evaluated at the position of the At particle. Therefore,

ov
B o B8 o v _ ab
U4y O3miayviay + m(A)“fLA)”(mPuﬂ (ff(A)) =9 —&Cz@)

The argument proceeds exactly as before with the result that for each particle,
the diffeomorphism invariant form of the second law may be written as

d (a(T<A>—V>> =% -v)

dt Oviy) oY

where 1
B v V.o B
Tty = 5mgas () vav(a)

These equations of motion are the variational equations for the action functional

S:/ (;T(A) —V(a:l,...,a:N)) dt

where each coordinate vector z{,) is varied independently.

6.2.2. Additivity of the multiparticle action

We conclude our discussion of SO (3) gauging with a theorem. The multiparticle
action includes a sum over the separate kiinetic energies of the particles, but there
is only a single potential. This means that the actions for distinct particles are
not additive. Is it possible to reformulate our variational principle as a sum over
single particle actions?

We answer this question in the affirmative. First, we see that the requisite
potentials exist as follows. Suppose we want an appropriate potential for particle
1. We can, in principle, solve the equations of motion for the remaining N — 1
particles, giving functions Ty (t) for A = 2,..., N. Substituting these functions
into the action we have

N
my dxr dxy ma dx"y (t) dx’y (t)
S= [ dt| =tg., (z) =L 2L A (alt V(2
/ (2 g (1) =335 +AZ2 g Imn (4 (1) =4 (#1,%)
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Since the middle term is now a function of ¢ alone, it does not contribute to the
equation of motion for x{ so S is equivalent to

S = /dt (Ty — Vi (21,1))

where V; = V (x1,t) = Vi (21,22 (t),..., 2N (f),t). The potential now only de-
pends on z; and time. In the same way we can find separate time-dependent
potentials, V4 (z4,t), for each particle.

The N-particle action may now be written as the sum

S! = g/dt (TA — Vi (xA’t>)

Conversely, suppose we are given a set of separate Lagrangians,
La=Ts—Va(xa,t)

Then, with the usual Newtonian assumption of impenetrability, we observe that
the world lines of the N particles are non-intersecting. Therefore, at any time
t there exist disjoint open neighborhoods, N4, such that N, contains the A*
particle and such that the closure of the sets N, remain disjoint,

NsNNp=¢
Now extend each N4 to an open set U4 such that
1. The sets U, form an open cover
2. Each set N, intersects exactly one Uy,

Finally, define a partition of unity on the open cover U4, choosing each f, such
that

fa(Na) =1

This condition is clearly compatible with the requirement that f4 be of compact
support on U4. We may now define

Vv <az’f‘, . ,x%,t) = Z faVa (25, 1)
A
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This gives the required single potential. We conclude that, for ideal Newtonian
particles, the action may be written as a sum of single particle actions if and only
if it can be written using a single potential dependent on all of the coordinates
and time.

We may strengthen this result by considering a second question. Noting that
a single, time-independent potential V' (xi‘, e ,:U§> will generally give rise to
a set of time-dependent individual potentials, V4 (z%,t), we ask the converse:
When does a given set of time-dependent potentials V4 (2%, t) give rise to a time-
independent single potential? For motions with bounded velocity (i.e., essen-
tially all classical physical motions) the answer is surprisingly simple. Let the x-
component of the velocity of particle 1 be bounded below by vy. Then a Galilean
boost in the z-direction by —2uvy insures that the z-component of x{' is a monotonic
function of ¢t. Inverting this function, we may replace the time dependence by ad-
ditional dependence on x1, achieving the desired result, V (az‘f, e ,x]ﬁv, t (x%)) .

We summarize these results with:

Theorem 6.1. For ideal Newtonian particles, the action may be written as a
sum of single particle actions if and only if it can be written using a single, time-

independent potential, V' (m?, . ,xﬁ,) .

In the next Section we our construction of the Hamiltonian formulation automat-
ically makes it additive.

7. A conformal gauge theory of Newtonian mechanics

Now we gauge the full O(4,1) symmetry of our globally conformal form of New-
ton’s law. The Lie algebra of the conformal group (see Appendix 5) is:

| = &M g —n" " np M 4 —mygM* + 63M, °
| = men*Pe—0:5

[M* , K] = §,K* = n™n, K*
]
]
]

[Pb, K = =M 5 —mpD
[Da Pa = _Pa
DK = K° (7.1)
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where M* . P,, K, and D generate rotations, translations, special conformal
transformations and dilatations, respectively.
As before, we write the Lie algebra in terms of the dual basis of 1-forms, setting

(M® 4w ) 0p0q = 1" Mye
<Pb7 ea> - 5?
(K", 1) 0p
(D,W) =1

The Maurer-Cartan structure equations are therefore

dw” , = w° ,w" .+ e’ —n%n,f.e’ (7.2)
de’ = e‘w" ,+ We" (7.3)
df, = w° £ +£W (7.4)
AW = e'f, (7.5)

So far, these structure equations look the same regardless of how the group is
gauged. However, there are different ways to proceed from here because there is
more than one sensible subgroup. In principle, we may take the quotient of the
conformal group by any subgroup, as long as that subgroup contains no normal
subgroup of the conformal group. However, we certainly want the final result to
permit local rotations and local dilatations. This which restricts consideration
to subgroups generated by subsets of {M® ,, P,, K,, D} and not, for example,
collections such as { P, K5, D}. Looking at the Lie algebra, we see only three ro-
tationally and dilatationally covariant subgroups satisfying this condition, namely,
those generated by one of the following three sets of generators

{Ma baPmD}
{Ma b?KmD}
{Ma baD}

The first two generate isomorphic subgroups, so there are really only two inde-
pendent choices, {M* ,, K,, D} and {M® ,, D}. The most natural choice is the
first because it results once again in a gauge theory of a 3-dimensional Euclidean
space. However, it leads only to a conformally flat 3-geometry with no new fea-
tures. The final possibility, {M® ,, D}, is called biconformal gauging. It turns
out to be interesting.
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Therefore, we perform the biconformal gauging, choosing the homogeneous
Weyl group generated by {M“ ,, D} for the local symmetry. This means that the
forms e® and f, are independent, spanning a 6-dimensional sub-manifold of the
conformal group manifold.

The solution of the structure equations (see [3]), eqgs.(7.2-7.5) may be put in
the form:

w = (0g0, — 1" Na) Yeda
W = —y,dz*
e’ = da*
1
f, = dy.— (yayb - 592%) dz’ (7.6)
Notice that if we set y, = 0, these forms reduce to
wa b - O
W =0
e’ = dz*
f,. = 0

which defines a 3-dim space Euclidean space with orthonormal basis e = dx®. If,
on the other hand, we hold z* = 0 (or any constant), then

w*, =0
W =0
e’ =0
f. = dy.

and we have a Euclidean 3-space with orthonormal basis f,.
We can see that e®f, is a symplectic form because e* and f, are independent,
making this 2-form non-degenerate, while the structure equation, eq.(7.5),

AW = e°f, (7.7)
shows that e®f, is closed, d (e*f,) = d*W = 0. This is also evident from the

solution, where
1
e‘f, = daz° (dya — (yayb — 59277(117) dxb)
= dz“dy,

34



is in the canonical form guaranteed by the Darboux theorem ([11],[12]). Because
of this symplectic form we are justified in identifying the solution as a relative of
phase space.

The symplectic form allows us to define canonical brackets, analogous to Pois-
son brackets, which in this context we call biconformal brackets. Then the pair
(x“,y,) satisfies the fundamental biconformal bracket relationship

{2, ys} = 03 . (7.8)

It is straightforward to show that a transformation is canonical if and only if it
preserves this bracket.

From eq.(7.8) it follows that yg is the conjugate variable to the position coor-
dinate x* and in mechanical units we may set y, = ayps,where p, is momentum
and ys has units of inverse length. As discussed in Sec.3, ap may be any constant
with the appropriate dimensions.

7.1. Single particle Hamiltonian dynamics

Since we are in a 6-dimensional symplectic space, we cannot simply write Newton’s
law as before. Moreover, with the interpretation as a phase space, we do not expect
physical paths to be geodesics. Therefore, we postulate an action. Noting that the
geometry contains a new one-form, the Weyl vector, it is reasonable to examine
what paths are determined by its extremals. Therefore, we consider the action

5= [w

Variation of S leads to the equation for a straight line. However, the results are
more interesting if we start with the relativistic conformal group, SO (4,2), then
take an explicit Newtonian limit.

We gauge the Lorentz-conformal group, SO (4,2) just as we gauged SO (4,1).
The Lie algebra, structure equations and the solution for the connection (eqs.7.1-
7.6) are unchanged except for the range of the indices, A, B = 0, 1,2, 3. In partic-
ular, the Weyl vector takes the form

W = —yodt — y,, dx™

where we identify 24 = (¢, 2%) with spacetime coordinates. The action now takes
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the form

S = /(yodt+ymd$m)
dz™
— m—| dt
/(?JO‘HJ dt>
= a/ + @ dt
= 0 ) Po T Pm dt

Before varying S to find the equations of motion, we restrict to the Newtonian
case. Specifically, we require that time, ¢, be universal. As a result, we cannot
vary t in the action. Moreover, variation of the fundamental biconformal bracket
for ¢ implies

0 = 5 {t7p0}
= {5tap0} + {t7 5]90}
_ 0 (dpo)
= S (7.9)

Thus, the most general allowed variation dpy of py depends only on the remaining
coordinates, dpy = —dH (y;,x’,t). Since variation may take us to any allowed
value of pg, po itself is dependent on the other seven coordinates,

bo = —H (ymmaat)

Thus, the existence of a Hamiltonian may be viewed a consequence of the existence
of universal time, and is intimately related to relativistic mechanics.
Varying the action now leads to

0 = 4S5

d m
- ozg/(—H—i—pm%) dt

= Oéo/ (— gi&vz — a—Hdpi —|—5piali dpid:ci) dt

opi dt — dt
which immediately gives us Hamilton’s equations for the classical paths.

= Nl
dt ox’ (7.10)
da’ oOH
i~ o (7.11)
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We immediately recognize H as the system Hamiltonian. Notice that the arbitrary
unit choice «y is absent from the equations of motion.

As expected, the symmetry of these equations includes local rotations and local
dilatations, but in fact is larger since, as we know, local symplectic transformations
preserve Hamilton’s equations.

7.2. Multiparticle mechanics

Generalizing to the case of NV particles, the action becomes a functional of N
distinct curves, C,,,n=1,..., N

N
S:_Z i W (7.12)

As for the single particle case, the invariance of time constrains py. However, since

W = —y,dz“ is to be evaluated on N different curves, there will be N distinct

coordinates x(an) and momenta, p&n) . Therefore, we have

= (rm (7.13)

Now, since time is universal in non-relativistic physics, we may set a:(()m) =t for
9z?
all m. Therefore, ax%m) =1 and we have
(k)
o (oni”)

— =0 (7.14)

k

Ipy”

which implies that each p(()n) is a function of the 6N spatial components only,

n i i p N
pyY = —Hp (w(l),...,x(N),pE SR )>

37



This means that each p(()n) is sufficiently general to provide a generic Hamiltonian,
so that the collective Hamiltonian, defined as

H= ZH (I(l ’IéN)’pgl)v"'7pz(N)> )

is also obviously generic. Notice that this procedure is invertible, since we may
always divide a given collective Hamiltonian into N identical parts, H = % > H,
setting H,) = H.

Returning to the action again use the assumption of universal time, dt(,) = dt,
to write

s -3

C’n.

- aO/ Z(pén o+ o)
n=1
N d i
. ao/z<pgn>+pg it >dt
= / (sz >dt

wherein we recognize the usual expression for the Lagrangian in terms of the
Hamiltonian,
N :
dz}
L= (m 7)) _ g
;p P

Notice, however, that we have now derived both the Hamiltonian and the La-
grangian from the Weyl vector, as well as the usual Legendre transform between
them.

The introduction of multiple biconformal coordinates has consequences for the
biconformal structure equations as well. Though mathematically equivalent, there
is a conceptual difference between the two sides of

S [ W [ 32 (st
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On the left, we sum N integrals, but on the right we may interpret the sum as
giving a new gauge vector,

N N
W = —q Zpde% =— Z yoda,
i=1 i=1
With the latter interpretation the exterior derivative of W is
N
dW = - “dyrda?
i=1

and the structure equation
dW = e’f,

must be modified to include the proper number of degrees of freedom. We therefore
modify the structure equation to

dW = ef, "

The remaining structure equations are satisfied by simply making the same re-

placement, (e, f,) — (e?n), f,g”)> . Thus we see that the introduction of multiple

particles leads to multiple copies of biconformal space, in precise correspondence
to the introduction of a 6 N-dim (or 8 N-dim) phase space in multiparticle Hamil-
tonian dynamics. These observations suggest that the symplectic structure en-
countered in dynamical systems has its origin in the symmetry of Newtonian
measurement theory.

Finally, we note the simple relationship between the original 6-dim biconformal
space and the 6 N-dim multiparticle space. Consider the cotangent space of the
biconformal space at the location of any one of the N particles. This cotangent
space is a copy of the flat biconformal space. If we build the direct product of these
tangent spaces at the positions of all N particles, we arrive at a space which is
locally isomorphic to the 6 N-dim phase space. Thus, we see that the phase space
is in one to one correspondence with a subspace of the cotangent bundle of the
biconformal space. The difference between the motion in phase space of a single,
6 N-dimensional vector and the motion in biconformal space of N, 6-dimensional
vectors is just a matter of point of view.

One advantage of the 6-dim point of view is that we may regard biconformal
spaces as fundamental in the same sense as configuration spaces, rather than de-
rived from dynamics the way that phase spaces are. This means that in principle,
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dynamical systems could depend on position and momentum variables indepen-
dently. While this is not so important for classical solutions, which separate into
a pair of 3-dimensional submanifolds (configuration and momentum), or for rel-
ativistic solutions which similarly separate (spacetime and energy-momentum)
the extended dependence on both position and momentum could yield important
insights into quantum mechanics.

7.3. Is size change measurable?

While we won’t systematically introduce curvature, there is one important con-
sequence of dilatational curvature that we must examine. A full examination of
the field equations for curved biconformal space ([3],[4]) shows that the dilata-
tional curvature is proportional (but not equal) to the curl of the Weyl vector.
When this curvature is nonzero, the relative sizes of physical objects may change.
Specifically, suppose two initially identical objects move along paths forming the
boundary to a surface. If the integral of the dilatational curvature over that sur-
face does not vanish the two objects will no longer have identical sizes. This result
is inconsistent with macroscopic physics. However, we now show that the result
never occurs classically. A similar result has been shown for Weyl geometries [13].

If we fix a gauge, the change in any length dimension, [, along any path, C| is
given by the integral of the Weyl vector along that path:

dl = IWdz?

I = lpexp (/ WAdZBA)
c

It is this integral that we want to evaluate for the special case of classical paths.
Notice that this factor is gauge dependent, but if we compare two lengths which
follow different paths with common endpoints, the ratio of their lengths changes
in a gauge independent way:

l—l = l1_o exp (% WAdxA)
la oo C1—Co

This dilatation invariant result represents measurable relative size change when
the exponential factor differs from unity.

We now show that such measurable size changes never occur classically. Since
[y and I3 must both evolve according to the classical equations of motion, the
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paths C; = C; (27", pL) and Cy = Cy (23, p?) are both solutions to Hamilton’s
equations. From the expression for the action we have

/W = /WAdxA
C C
f

~ g / (H (2" (), i (£)) = i (1) dx;(t)) “

where z" (t) and p,, (t) describe any solution to Hamilton’s equations. This is just
the change in Hamilton’s principal function between the endpoints (see Appendix
6),

S(xs,ty) =S (i)

Any classical solution evolving from (xz;,t;) to (xf,ts) gives this same result, so

we always have
7{ Wadz™ =0
C1—-Cs
and no measurable size change.

We have shown that the ratio of magnitudes of any two quantities evolving
between the same initial and final points will remain constant. We can do better
than this, however. Hamilton’s principal function gives us a way to define a gauge
in which magnitudes evolved along classical paths remain constant. Since the
Weyl vector is a gauge vector, it changes inhomogeneously according to

W =W +d¢

when we choose a new gauge ¢. If we choose ¢ = S (z,t) then the dilatation factor

for any length is
exp(/W’) = exp(/W—l—/dS)
= exp (/W + S)

But [ W is equal to —S and the factor is unity. In this gauge, classical objects
retain their magnitudes.
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8. Conclusions

We have shown the following

1. The SO(3) gauge theory of Newton’s second law is Lagrangian mechanics.
This gauging allows us to derive the usual L = T'—V form of the Lagrangian.

2. The SO(4,1) gauge theory of Newton’s second law is Hamiltonian mechan-
ics. The absence of measurable classical size change is equivalent to the
existence of Hamilton’s principle function.

These results provide a new unification of classical mechanics using the tools
of gauge theory.

We note several further insights.

First, by identifying the symmetries of a theory’s dynamical law from the
symmetry of its measurement theory, we gain new insight into the meaning of
gauge theory. Generally speaking, dynamical laws will have global symmetries
while the inner products required for measurement will have local symmetries.
Gauging may be viewed as enlarging the symmetry of the dynamical law to match
the symmetry of measurement, thereby maintaining closer contact with what is,
in fact, measurable.

Second, we strengthen our confidence and understanding of the interpreta-
tion of relativistic biconformal spaces as relatives of phase space. The fact that
the same gauging applied to classical physics yields the well-known and powerful
formalism of Hamiltonian dynamics suggests that the higher symmetry of bicon-
formal gravity theories may in time lead to new insights or more powerful solution
techniques.

Finally, it is possible that the 6-dimensional symplectic space of SO(4,1) gauge
theory represents a deep insight. Like Hamiltonian dynamics, quantum mechan-
ics requires both position and momentum variables for its formulation — without
both, the theory makes no sense. If we take this seriously, perhaps we should look
closely at biconformal space as the fundamental arena for physics. Rather than
regarding phase space as a convenience for calculation, perhaps there is a 6-dim
(or, relativistically, 8-dim) space upon which we move and make our measure-
ments. If this conjecture is correct, it will be interesting to see the form taken by
quantum mechanics or quantum field theory when formulated on a biconformal
manifold [1].

The proof of Sec. 8 is encouraging in this regard, for not only do classical
paths show no dilatation, but a converse statement holds as well: non-classical
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paths generically do show dilatation. Since quantum systems may be regarded
as sampling all paths (as in a path integral), it may be possible to regard quan-
tum non-integrability of phases as related to non-integrable size change. There
is a good reason to think that this correspondence occurs: the covering group of
SO (4,2) admits complex representations in which the Weyl vector is pure imag-
inary. This does not alter the classical results, but it changes the dilatations to
phase transformations. If this is the case, then the evolution of sizes in biconfor-
mal spaces, when expressed in the usual classical variables, gives unitary evolution
just as in quantum physics. The picture here is much like the familiar treatment
of quantum systems as thermodynamic systems by replacing time by a complex
temperature parameter, except it is now the energy-momentum vector that is re-
placed by a complex coordinate in a higher dimensional space. A full examination
of these questions takes us too far afield to pursue here, but they are under current
investigation.
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Appendices

Appendix 1: Point transformations of Newton’s second law

Here we derive the point transformations leaving the second law invariant,
assuming the force to transform as a vector.

Consider a general coordinate transformation in which we replace the Cartesian
coordinates, z°, as well as the time parameter, by

)

q = qz (Xv t)

T = 7(¢)
We have four functions, each of four variables. This functions must be invertible,
so we may also write

o = a'(q,7)

t = t(r)
The limitation on covariance comes from the acceleration. First, the velocity is
given by

; dz' (q,7)
! dt
_dr ox’ @ N oxt
C dt \O¢? dr Ot

where we use the usual summation convention on repeated indices, e.g.,
or'dg?  Ox'd¢?

= oq? dr oq? dr

The acceleration is
. dv?
U C )
dt

_drd (dr (0x'd¢g’ = Ox'
= didr (a (aﬁ* a))

_ (dr 2 [0z d*q’ d*t (0t dg’ O
- (a) (aqu>+ﬁ<am+af>
dr\*dg¢* [ 0%z dgf 9%
+($> E(5’Q’“06ﬂ'%+%)
dr\’ [ &' d¢¢ 9%
+(a) (m%* aTz)
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The first term is proportional to the acceleration of ¢’, but the remaining terms
are not. Since we assume that force is a vector, it changes according to:

8 i
oq’

Fi(x,t) = Fi (q,7) (8.1)

where 6”] is the Jacobian matrix of the coordinate transformation. Substituting

into the equation of motion, we have
1 02 dr\? [0zt 27
Fi(q,7) = (- -
m@qﬂ dt oq? dt
>t (02t dg’ O
L (e S
dt> \o¢y drv = Ot
() i (o de | o
dt ) dr \0qkdqi dr = Oq¢*Ot
dr\* [ 9% dg/ 07
— - — 8.2
* (dt) (87’8q3 dr * 37’2> (8.2)

Newton’s second law holds in the new coordinate system,

. d2qm
F"(q,7) =m——
if and only if:
(@
dt
d*t (0x'dg’  Ox'
0 = dT(@qJ dr - 87)
dr\°d dq* [ 0%*z' d¢f 02z
(=) = R
dt ) dr \0qkdqi dr = Oq¢*Ot
dr\? [ 9%t d¢f 0%
* <$> (m% ! a_) (8:3)
From the first, we have
T=1t+ to

together with the possibility of time reversal,

T:—t+t0
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for the time parameter. Using this result to simplify the second (including 1

dr?
0),
o' d dif
0q¢k0q7 dr dr
Pzt dg? 0?2

—— 4+ — 8.4
oToq¢’ dt * or? (84)
Now, since the components of the velocity, %, are independent we get three
equations,
0?2’
0 = ——— 8.5
0qkdqi (85)
02z
0 = —— 8.6
OqkoT (86)
022’
0 = 8.7
5.2 (8.7)
Integrating,
0%’ i i (.m i(om
0 = 55 = =2(¢")+v)r (8.8)
0t ol ;
0 = W = 0= 8qk = Vg = const. (89)

The remaining equation implies that the Jacobian matrix is constant,
o _ o
o¢ o¢

Integrating, the coordinates must be related by a constant, inhomogeneous, gen-
eral linear transformation,

= J"} = const. (8.10)

™ o= JNg v+ af (8.11)
t = 7470 (8.12)

together with a possible time reversal of ¢.

We get a 16-parameter family of coordinate systems: nine for the independent
components of the nondegenerate 3 x 3 matrix J, three for the boosts v, three
more for the arbitrary translation, z{’, and a single time translation.

Notice that the transformation includes the possibility of an arbitrary scale
factor, e=2* = |det (J™ )] .
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Appendix 2: Special conformal transformations

In this Appendix, we show that special conformal transformations are 1 — 1
and onto on compactified R3.

In three dimensions, there are ten independent transformations preserving the
inner product (or the line element) up to an overall factor: three rotations, three
translations, one dilatation and three special conformal transformations. The first
six of these are well-known for leaving ds? invariant — they form the Euclidean
group for 3-dimensional space (or, equivalently the inhomogeneous orthogonal
group, 1.SO(3)). The single dilatation is a simple rescaling. In Cartesian coordi-
nates it is just

o= My
where X is any constant. The special conformal transformations are actually a
second kind of translation, performed in inverse coordinates, given by:

o+
14 2bix; + b2

i

q

The inverse is given by: ' '
xi _ qz . q2b1
1-— 2(]ZbZ + q2b2
Clearly, these transformations are not well-defined on all of R? because the de-
nominator vanishes when

0=1+2bx; + b’z

We may demand b’ different from zero since otherwise we have the identity map.
Multiplying by b we then find

0 = b +20%; + (?)°
— (b + b2’

Since the norm of a vector vanishes only if the vector itself vanishes we immediately
have the unique result

Therefore, with a one point compactification (adding a “point at infinity” anal-
ogous to the one point compactification of the complex plane), we can make the
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transformation one-to-one and onto. Specifically, we define an inverse ' to every
vector, z° except the origin, ‘
i T
V=g
then extend the manifold by defining the point at infinity to be the point with
coordinates 3* = 0.

The general map now sends z° to

B b+ 22
14 2bix; + b2

7

q

except for 2% = —g—;, which is mapped to the point at infinity. The point at infinity
is mapped to 2—2
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Appendix 3: What is the velocity after a special conformal transfor-
mation?
Suppose a particle follows the path x (¢) with velocity

_dx (1)
o dt

A%

If we introduce new coordinates

B x + °b
14+ 2x-b + 222

where 3 = (1 + 2x - b + b?z?). Then

y — 47 (x+a%b)

2
y —yb
t) =
x (t) 1—2y-b+b%y2

and differentiating,

dy’ -1 (i i -2 (i i
5;:431®f+mw)—52(x+x%)p@+zw%) (8.13)
This is just as complicated as it seems. The velocity in the new coordinates is
d %
d?if = B (v+2(x-v)b)— 8% (x+2”b) (2v-b+20* (x - V))
= o7 (BTN (6 4 2x;b") — B2 (2 + %) (2b; + 20%x;)) (8.14)
The explicit form is probably the basis for Weinberg’s claim [14] , that under
conformal transformations “...the statement that a free particle moves at constant
velocity [is] not an invariant statement....” This is clearly the case — if v’ = % is
constant, % depends on position in a complicated way. Indeed, as shown in Sec.3,

constants become position dependent as well, though there remains an invariant
spectrum.

To understand the velocity transformation, note that using eq.(8.13) we may
rewrite eq.(8.14) in the usual form for the transformation of a vector.

oyt oy
oxd Ozl
This is the reason we must introduce a derivative operator covariant with re-

spect to special conformal transformations. The statement v*Djv* = 0 is then a
manifestly conformally covariant expression of constant velocity.

J
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Appendix 4: The geometry of special conformal transformations
We have shown that

9ij = 5_2%
But notice that, if we perform such a transformation, the connection and curvature
no longer vanish, but are instead given by

e’ = B 'da"
de” = e’w!
a a c, .a

The form of the curvature is given in many places (eg. [6]), but we provide the
simple derivation here for completeness. From the second equation it follows that

wy = — (5,bea - nacnbdﬁ,ced)
Then substituting into the curvature,

R;, = dw, —wjw!
= =040 pee e + 11N et + 046 5 yeced — i, .0 ee
_536,b6,ceced + 5377bc7]feﬁ,f57eeced - mcn“fﬁ,dﬁ,feced
bea = 0cBa = 0aB e T 1" Ml cc = 1" NMoe ca
+ (057be — Oepa) erﬂ,fﬁ,e
which is pure Ricci. Since the Weyl curvature tensor vanishes for conformally

flat metrics, Ry, must be constructible from the Ricci tensor alone. To see this
explicitly, write the Ricci tensor and Ricci scalar,

Rea = (n—2)Byq+ Mpa“Bec — (n—1) mdnfeﬂ,fﬁ,e
R = 2(n-1) nbdﬂ,bd —n(n-1) Ufeﬂ,fﬂ,e

where

0aB = 0. (1—2z-b+2%V?)
= —2b, +2b%z,

OB = 0O (—2b, + 2b%x,)
= 20°n,,
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so finally,

Reg = 4(n—1)0"(1=3)my
R = 4n(n—1)0*(1-pB)

The full curvature therefore is determined fully by the Ricci scalar:

bea = (0¢7ba — OqMye) 46% (1 — 6))
R
— a . 5(1
n (n . 1) <5cnbd dnbc)

where

R=4n(n—1)b" (2z-b— 2%b?)
We may also write
1

Rab_ 4

Rnab =0
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Appendix 5: The Lie algebras iso(3), so(4,1) and so(4, 2)

For our gauging, we require the form of the Euclidean Lie algebra iso (3), the
Euclidean-conformal Lie algebra so (4,1) and the Lorentz-conformal Lie algebra
s0(4,2). We can find all three from the general form of any pseudo-orthogonal
Lie algebra. Let n,5 = diag(1,...,1,—1,...,—1), with p positive and ¢ negative
values, be the pseudo-metric. Then the Lie algebra o(p, q) is

1
[MA BaMc D} = _5 (5gMA D~ UBDUCEMA E TIACWBEME D~ 5?)MC B)

where the generators are M* B = n4¢Mcp and Map = —Mpa. We evaluate this
for so(4,2) then find so (4, 1) and iso (3) as sub-algebras.

First, from among the M 45, we identify the generators of Lorentz transforma-
tions, translations, special conformal transformations and dilatations. Let A, B =
0,1,...,5 and «, 5 = 0,1,2,3 and rotate coordinates so that the (p,q) = (4,2)
metric takes the form

-1
1
B 1
Nap = 1
1
1
Then identifying
1
§Pa = Ma4 = _M4a
1
_§Ko¢ - MOé5 - _M5a
D = —2M5 =2Ms,
we have,
a 1 e oo ey o e
[M ﬁ?MM u} - _5 (‘%M v 775#7“ M o7 Mnﬁo'M v 6VMM 6)
1
[POH M* 1/] - _5 (5565 - nocyn'uﬁ) PB
ey 1 e o
[K 7M'u 1/] = 5 uég_n Mnyﬁ) Kﬁ
[Py, K" = 2M* _+6'D
[Da Poz] - Pa
DK = —K°
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with all other commutators vanishing. This is the usual form of the conformal
algebra. The matrices M* ; generate Lorentz transformations, the four generators
P, lead to spacetime translations, K give translations of the point at infinity
(special conformal transformations), and D generates dilatations. Restricting o =
(0,a) = (0,1,2,3) to the spatial indices, we immediately recognize the so (4,1)
sub-algebra

a C 1 C a ce a ac e a C
[M b M d] = _§<5bM a— Mpa“M® , —n*ny M ;= 65M° )
C 1 C Cl

[Paa M d] = _5 (51152 — Tad’l b) P,

a C 1 a $C ac
(K, M d] = B (5d5b —N"Ngp) K’

[P, K] = 2M°¢ ,+ 6D

[Da Pa] - Pa
[D,K*] = —-K¢°

This has the immediate iso (3) subalgebra

a C 1 C a ce a ac e a C
[M b M d,] = 5 <5bM a— Mg M | —n*ny M 43— 0gM b)
C 1 C Cl
[Paa M d] = _5 (5adlc)l — Nad" b) Pb

While these relations describe iso (n) in any dimension n, in 3-dim we can simplify
the algebra using the Levi-Civita tensor to write

1

J, = —=& M,
gfa b

Mab - _Eabcjc

Then we have the familiar form of iso(3),

[Jm Jb] = Eab CJC
[Jas P] = €4 P
[P, B = 0
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Appendix 6: Hamilton’s principal function

Though the existence and properties of Hamilton’s principal function are well-
known, we give a brief proof of its existence here because the result is central
to the non-measurability of physical size change. This existence depends on the
integrability of the Weyl vector along classical paths, since

St = a0 [ (H(xw),pm(t»—pk(t) d”jdt“)>dt

0to

= —/WAdxA
c

:_/CW

where 2" (t) , pn (t) describe any solution to Hamilton’s equations which passes
through the initial and final points. In order for S (z,t) to be a function, the
result of this integration must be independent of which classical path is chosen.
Using Stoke’s theorem, the difference between any two such integrals is given by

/ W-— W = \%%
C1 C2 C1—Ch
o
S
where C; and Cy are classical paths. This vanishes if and only if dW = 0.
Computing, we have

W = o (pndz™ — Hdt)
dW = o« (dp, Adz™ — dH Adt)

H H
= g <dpm Adz™ — 8—dpm Adt — 8—dxm A dt)

OPm ox™
= g (dpm + gx_[fndt) A (dxm — STHdt)

= 0

where the final result follows from Hamilton’s equations. Thus, the integral of the
Weyl vector is a function,

S(x,t):—/:W

when evaluated on classical paths.
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