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Abstract

Details of the calculation, dropping the matter assumptions in
JMP1997. The gauge choice here is also more powerful.
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1 The conformal group

We begin with a review of the conformal group, focussing on bosonic repre-
sentations. Consider a compactified, pseudo-Euclidean space with metric

Nay = diag (1,...,1,—1,...,—1)

having p positive and g negative eigenvalues, with p + ¢ = n. For Euclidean
spaces (p =n), the compactification is accomplished with a single point.
For Lorentzian spaces (¢ = 1), the compactification requires a light cone at
infinity. The conformal group is defined as the set of transformations leaving
Nap unchanged except for a possible overall function. It may be shown that
SO (p+ 1,9+ 1) provides a linear representation of this group. While the
considerations below apply to any values of p and g,

Geometrically, we interpret the w transformations of the confor-

mal group in the following way. First, @ of the transformations corre-
spond to rotations, Lorentz transformations, or, in general, pseudo-rotations
in the underlying pseudo-Euclidean space. Next is a single dilatation, which
is accomplished by a simple scaling. These together comprise the homo-
thetic (or Weyl) subgroup. The remaining 2n transformations include n
translations and n special conformal transformations. The special conformal
transformations are translations of the compactifying point inverse to the
origin.

When the Lie algebra of the conformal group is expressed in differential
forms, we have connection 1-forms, wy for pseudo-rotations, w for dilata-
tions, w® for translations and w, for translations. These satisfy the Maurer-
Cartan structure equations,

dwi = wiw® 4+ 204 wew’ (1)
do® = Wl 4+ wlw® (2)
dw, = wbwy+ wew) (3)
dw) = W, (4)

where ]
Al = = (268 — 1)

and the antisymmetric wedge product is assumed between differential forms.



Flat biconformal spaces are now formed as the quotient of the conformal
group by the homothetic group. The quotient provides a projection in the
sense that each homothetic equivalence class projects to one point of the
base manifold. We therefore have a fiber bundle with homothetic fibers and
a 2n-dim base manifold. The base manifold is spanned by w® and w,, now
called the solder form and co-solder form, respectively.

Flat biconformal space is a scale-invariant symplectic manifold. The di-
latational gauge field, wy, called the Weyl vector, guarantees scale invariance,
while the corresponding structure equation,

dw) = ww, (5)

is manifestly symplectic — the left side is closed while the right side is neces-
sarily non-degenerate.

Curved biconformal spaces are now generated by passing to the Cartan
structure equations. Starting from the Maurer-Cartan equations, general-
ize the connection. The use of a general connection in the Maurer-Cartan
equations leads to

dwj = wiw? + 2A%waw® + (6)
dw® = Wi+ wiw® + Q° (7)
dw, = whwy+ wewl + (8)
dw) = wiw, + 2 9)

where the 2-forms Q¢ Q% ©,, and QY, called curvatures, characterize the

failure of the new connection to satisfy the original equations. These curva-
tures are subject to two conditions:

1. The curvatures must be horizontal. This means they must be 2-forms

in w® and w, only. The condition is equivalent to the demand that the

integral of the connection along any curve in the bundle is independent
of lifting on the bundle.

2. The equations must remain integrable. The integrability condition is
found by taking the exterior derivative of each structure equation, and
results in the (four) Bianchi identities:

= dQf + Qw? — Wi 4+ 2A%Qw° + 2A%w, Q¢ (10)
= dQ* + QW — Wi — WP 4 QJW” (11)
= dQ, + Qwy, — Wt + Qe — w2 (12)

dQY + Q%, — w'€, (13)

o O o O



The 2-forms Q¢ Q% Q,, Q) are called the Lorentz curvature, torsion, co-
torsion and dilatational curvature, respectively.

The Cartan equations for several familiar submanifolds easily found from
these structure equations. If the co-torsion is zero, we may consistently set
the co-solder form to zero as well. This reduces the 2n-dim geometry to
an n-dim geomerty, on which we retain the structure equations for a Weyl
geometry with torsion. Renaming

w* = e

w) = W

Q = T°

Q = Ry

we have

dvy = wjw?+ Ry (14)
de® = ewb + We® + T¢ (15)
dw = QY (16)

If, in addition, the torsion vanishes, we have the structure equations of a
Weyl geometry,

dwy, = w,ws+ R} (17)
de” = e'wy + We* (18)
dW = Q) (19)

Finally, if the dilatational curvature vanishes we may choose a gauge in which
the Weyl vector vanishes, leaving the structure equations of an n-dim pseudo-
Riemannian geometry,

dwy = wjws+ R} (20)
de” = ew} (21)

The remaining piece of the Lorentz curvature,
a __
b — Rbcde e’

is the usual Riemann curvature 2-form. This reduction guides us in finding
the Einstein equation within more general biconformal spaces.



Notice that without the restriction to the w, = 0 submanifolds, each of
the curvatures has far more components. Generically,

1 1
04 = §Q§decwd + Qacww? + éﬂgc‘iwcwd

where (g) € {(‘;), (“), (a), (8)} This is the reason that the reduction of
the field equations presented below is somewhat lengthy. We will call the
three terms of this expansion the spacetime curvature, cross-curvature, and
momentum curvature, respectively.

We note that in certain dimensions biconformal spaces may be supersym-

metrized. When n = 4, the supersymmetric structure equations become

duf = il + 40w + P (0% ] o AUE (22
o' = Wl = 2P wB (23)
dwo = wiwe+waw — 5P Pl any XAXE (24)
dv = 2wawa+%Pa’6QAB)(£¢§ (25)

These equations describe a superspace of 16 dimensions (8 bosonic + 8
fermionic). The bosonic sector agrees with eqs.(6-9) if we replace v/2w® — w®
and V2w, — w,. Details of the supersymmetric case may be found in [AN-
DERSONWHEELER|

The remainder of our considerations refer to the purely bosonic case.

2 Field equations in biconformal space

In addition to the structure equations, we impose field equations derived
from an action functional. The most general such functional which is of zero
conformal weight and is linear in the biconformal curvatures is [WEHNER-
WHEELER|:

S = / (Oéﬂg + 5985{,‘ + vwbwa) Eaenac?® Fw, - CwWpwe - Wt

See [WW] for details.



The field equations follow by varying S with respect to each of the con-
nection 1-forms. Generically we have

A A a Aa

where the coefficients of the variation, f3,w?® and ga®, are arbitrary. Each of
the four connection types therefore leads to two independent field equations.
The field equations following from the linear action are:

B(Q%0 — 29,405 0 (26)
B, " —204.55) = 0 (27)
a(=AHQ" , +2A50592,7) = 0 (28)
a( =AY Q, P+ 208650M,) = 0 (29)
aQ,. + 8. = 0 (30)
2(af2g + P0G + Ay = 0 (31)
aQbee + 300 = 0 (32)
2(aQg; + Ba)0% + A = 0 (33)
and we have defined
A = (a(n —1) — B+ yn?)6; (34)

Equations (6-9) and (26-33) define a gravitational field theory on bicon-
formal space. We seek a description of the torsion-free solutions to these
equations.

Our derivation proceeds in two parts. First, the field equations, vanishing
torsion, 2% = 0, and the Bianchi identities, provide algebraic constraints
on the biconformal curvatures. These may be manipulated to simplify the
form of the curvatures. Second, the structure equations may be partially
integrated to further specify the solution. These parts are presented in the
next two sections.

3 Algebraic part of the solution

Setting the torsion to zero,

Q=0



the structure equations reduce to

Q= dw —wiw® — 2A% 0wt (35)

0 = dw®— Pwf — wiw” (36)
Q, = dw, —wlwy — wew) (37)
Q) = dw)— ww,, (38)

while the first four field equations (eqs. 26-29) reduce to:

—26Q,405 = 0 (39)
g = 0 (40)
2aA6550, 1 = 0 (41)
—aA%Q, P = 0 (42)

The remaining field equations are unchanged.

3.1 Bianchi identity for vanishing torsion

First, vanishing torsion leaves the corresponding Bianchi identity algebraic,
0=’y — Q" (43)
This has components
Qﬁ)cd] - 5ﬁjﬂgcd]
= 045 — Qg — 6, Qg + 53%;
0 = O — o (44)
There are three independent trace equations. The ab trace of the first gives
Qa

bac

— ey = — (0 — 2) A (45)

cab —

the ab trace of the second gives
Qe = —(n—1) Qg (46)
while the ab trace of the third gives

Qo =0 (47)
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from which it immediately follows that
Qued =0 (48)
Consider eq.(46). Lower the first index and cycle the indices.
0 = ey — 0er QU — 1S + neaS
0 = 0y — a2 — nacU + nas e
0 = 02 — Mol — MaCe + 168204 (49)
Now add the first two and subtract the third, using the antisymmetry of
ncfQ,J:; on cb:
0 = 204" — 218205 + 2ma 20 (50)
or
Q% = 1% e — 05e
N 1)
As a check, we note that the trace reproduces eq.(46)

ba be Oa b0a
ch = 7n anQOe_(SbQOC

" (52)
as required. Summarizing;:
Qed = 0 (53)
Q5 = 0 (54)
Ya = —20%M% (55)
Zac_ Zab = _<n_2)98bc (56>

Notice that, with the exception of the spacetime term, €27, the curvature is
totally determined by the dilatation.

The remaining Bianchi identities are still differential relations among the
curvatures, rather than algebraic constraints. This completes the most useful
consequences of the Bianchi identites.

3.2 Field equations for curvature

Next we look at the field equations for the curvatures (egs. 30,31, and 33).
Eq.(32) is identically satisfied by the Bianchi identities.

9



3.2.1 Eq.(30)

The symmetric and antisymmetric parts of eq.(30) are

QZac + anb =0 (57>
«Q (QZac - anb) = —Qﬁngc (58>

Combining the second of these with eq.(56) yields
(28 — (n — 2) o] Q. = 0 (59)

which, in turn, holds if and only if one of the factors vanishes. Thus, we
have:

Case 1 (Generic): For generic coupling constants in the action we must
have
Qpe =0 (60)

Case 2: (Exceptional): An exceptional case occurs if the coupling con-
stants are related by
20=(n—-2)a (61)

We will examine both cases after studying the remaining field equations.

3.2.2 Equations (31) and (33)

Now consider egs.(31 and (33). The difference between these shows that
2 = D (62)
From the previous Bianchi result, eq.(55),
O = 20O = 5308 + 1)
we find the traces

0 = 0+ 0l
Qe = =08 + 1" Neaf2?

and the double trace
O = —(n — 1)Qg;

10



From eq.(62), we have the equality of the two traces,

—ne + Qv = — 0008 + 1" na 20
naee = (n— 1) naS20 + Neaf 200

so symmetrizing and antisymmetrizing, we find

e + Qg = 204, (63)
(n —2) (%0 — 1) = 0 (64)
so for n # 2 we get simply
1
o = o (65)
n
Defining a function
1
= - 66
K n Oc ( )
we have simply
Qo = KoY (67)

For n = 2 the antisymmetric part remains undetermined, so we may write
O = Kf + Ag00 (68)

Case 1: n > 2 Now, using eq.(55) from the torsion Bianchi identity, we
find the full cross-curvature,

Qg = —2A50%: (69)
= —2kAY (70)

From the remaining field equation involving the cross term of the curvature,
eq.(31),

2 (a5 + BO) 6% + Af = 0 (71)
we now find
(n—1)(a(n—1)—B)kdéf + A =0 (72)
where
Ay = (aln—1) = B+yn?) o} (73)

11



Therefore,

1 yn?
e O § (S UY P Sy ) (74)

- &1 (Ha(ni—nl?)—ﬁ) (75)

There is one exceptional case, when

an—1)—p4=0

In this case,
0=Ay = (a(n—1) — B+7n?) & = yn*s; (76)
so the exceptional case, eq.(61), can only occur if v = 0 in the original
Lagrangian.
Collecting results for n > 2 we have:

Q= —2mA (77)
O = Koy (78)
Qe = 0 (79)
Q5 = 0 (80)
1 yn?
= — 1 1
< = —op (M aetns) oy
and either the generic case
anc =
ngc =0
or the special case,
amn—-1)—-0 =0
v =0
Case 2: n =2 Ifn =2 then
1
Qo5 = 505 c + A e (82)

T2

12



replaces eq.(78).
Check the n = 2 case: Define a function

1
598§ (83)

K

then

Qop = w05 + AGQ: (84)
Now, using eq.(55) from the torsion Bianchi identity, we find the full cross-
curvature,

Wi = —2A%0% (85)
A CORN AT (86)
= —2rA% - 205AT Q! (87)

From the remaining field equation involving the cross term of the curva-
ture, eq.(31),
2 (a5 + QYY) 6% + Af = 0 (88)

we now find

2 (o (~2nAg — 2057 A%,000) + 8 (k05 + AHON ) ) 65+ AF = 489)

(—MM;@ — 4aAAY QY 423 (msg + A;zagg)) 5o £ AT = (90)
The extra terms reduce to
—a AP AY QY5 2BAGON 8% = (—a + B) AUOY
so the full expression is
(o — B) Koy + (—a+ B) ARQY + A =0

and the symmetric and antisymmetric parts now give two equations,

(a=PB)rdy+Ay = 0 (91)
(—a+B)AYQT = 0 (92)

Therefore, x has the same constant value as before and the antisymmetric
part of the cross-term vanishes,

4
K = —(1+ 7 ) (93)
S (94)




unless @ = 3. In this one exceptional case,

a=0
In this case, we find
0= Ay = 4v6; (95)
so the exceptional case, a = [, can only occur if v = 0 in the original

Lagrangian. In this one special case, both x and the antisymmetric part of
the cross-term of the dilatational curvature remain arbitrary.

This completes the algebraic part of the solution of the curvature equa-
tions.

3.2.3 Co-torsion field equations

Next, we turn to the remaining field equations which now contain only co-
torsion terms when we set the torsion to zero:

269,405 = 0 (96)
gtk = 0 (97)
2007630, = 0 (98)
—aAQ® = 0 (99)

The second and fourth equations show that €, * = 0. Now consider the
remaining two:

6 (Qaba - Qbaa> =0 (100)
aAd (52,0 — 820, 0) = 0 (101)

Expanding,

a c b b a

Q) =619, — nan™ (Q, — 602,,") =0 (102)

we trace fg:
—(n —2) Q" = nan Q] (103)

Summarizing:

Q,% =0 104

o

5 (Qaba - Qbaa> =
alAg (8,5 —089,0) =

g°“ac

- (Tl - 2) Qaea = HEbUCfocb

=}
~—~
—_
=}
=2
~— — ~— —

14



3.3 Summary of algebraic part:

We first summarize the generic case. For all n and generic values of the
constants «,  and ~, we have:

Curvature:
Qe = 0 (108)
Qb = —2xkA% (109)
Qe = 0 (110)
Torsion:
Q=0 (111)
Dilatation:
Q0 = 0 (112)
QY = Ko (113)
Q. = 0 (114)
Co-torsion:
Q® =0 (115)
aAd (0 -0, = 0 (116)
6(chc_Qbaa) = 0 (117)
_(n_2>Qaea - neanfocb (118>
where | )
'yn
e O o — 119
" <n—1>< +a(n—l)—ﬁ) (119)

15



There is one special case, when 23 — (n —2)a = 0. In this case, the

spacetime dilatational curvature, )., is undetermined and

anc + anb =0
«Q (QZac - anb) - _2698&:

4 Differential part of the solution

(120)
(121)

Now we look at the structure equations. We begin with the generic case in
its entirety. In a subsequent Section we consider the special cases above.
First, we substitute what we know of the curvatures into the structure

equations:
1Qa c d 2) Aac d _ d a c .a 2Aad c
5 bcdw W — K dbwcw — wb - wac - Cb C(de
0 = dw®— wwf — wiw"
Q, = dw, — wgwb — wawg
Kwaw® = dwg — Wy,
with the additional condition
a —
Qbac - O
for the curvature and
ab
Q% =0
cf b b a _
alG (0 — 6,02, = 0

ﬁ(chC - Qbaa) =0
- (n - 2) Qaea = neanfocb

for the co-torsion. The coefficient s is constant.

4.0.1 Dilatation

Let’s look at the dilatation. First, in the generic case (where Q9,. = 0) we

have

Kwaw® = dwg—w“wa

dw) = (1 —rK)w'w,

16

(131)
(132)



with Bianchi identity,

0 = d((1—k)w*w,) (133)
= (1—-k)dw'w, — (1 — k) w'dw, (134)
= (1-k) (Wwj + wiw®) w,
— (1= k) w* (R + whwy, + w, W) (135)
= —(1—k)w'C, (136)
so that
—(1-rK)w'Q, =0 (137)

Evidently, we have another special case if Kk = 1. Using eq.(75) for &, this
only happens when

n—1 = —1— (138)

an—1)—0F = —yn (139)

Once again we have a special choice of the constants in the action. We will
therefore treat the x = 1 case at the end with the other special cases.

Continuing with the generic case. From eq.(137) and s # 1, it follows
that

Qubg = 0 (140)
Qo = 0 (141)
QL =0 (142)
In addition we have
aAd (0 =820, = 0 (143)
—(TL—2> Qaea - Ueaancha (144>

17



4.0.2 The solder form and its involution

Next consider the torsion equation. With the torsion vanishing, the solder
form w® is in involution,

dw® = WPwi + wow*
Therefore, by the Frobenius theorem, there exist n coordinates such that

w*=e"=e, “dz*
where we introduce the usual notation for the solder form to denote this
particular class of coordinate choices. Holding x* constant so that w® = 0
gives a set of submanifolds spanned by the co-solder form, w,. On these
submanifolds, the structure equations reduce to

dwy, = wjwy (145)
dw, = wbwy+ wew) (146)
dw) = 0 (147)

These equations describe a flat Weyl geometry. By performing a suitable
local Lorentz transformation and local dilatation, we may choose a basis for
this geometry with vanishing connection,

wy, = 0
Wl =0 (148)

The first and third equations are satisfied, while the second becomes
dw, =0

with solution
we = db, = 0°0,dy,

We denote this restriction of the co-solder form by f,. Notice that the ex-
terior derivative is restricted to the y, coordinates since we are still on the
submanifold. Since we got to this form by making a Lorentz transformation
and a dilatation, holding x fixed, the transformations required may be dif-
ferent at different values of x*. The functions 6, therefore depend on all 2n
coordinates.

18



Having made a partial gauge choice, we may now allow x* to vary. Each
connection or basis 1-form will acquire a piece proportional to e*. The forms
therefore extend back to a basis for the full biconformal space in the form

wp = wpe° (149)
W' = e (150)
= e, “(z,y)dz® (151)
wo = £, + bye’ (152)
= 0% (2,y) dya + b (x,y) da” (153)
w) = We® = Wsds’ (154)

Both e, * and f, ® must be invertible.
We can immediately restrict the functional dependence of the solder form
by examining its structure equation with this form of the connection:

de* = e'w! +wle”

b b
= wpe’e + We'e”

Since the right side is quadratic in the solder form, the 0%e® (z,y) dy, con-
tribution to the exterior derivative on the left vanishes. Therefore, the solder
form depends on x only, e* = e (z).

We can simplify the form of the co-solder form as well. First, observe that
there is total freedom in the choice of the coordinate functions 6,. Extracting
an inverse solder form e, *(z) and a constant, a, from both 6, and b,g,

wa = 0% (2,y) dya + bap (7, y) dz”
ae, # (8a9udya + b#ﬁ (iL‘, y) dxﬁ)

we rewrite the y, derivative of 6, as an exterior derivative on the full bicon-
formal space,

we = ae, " (0°0,dys + bus (z,y) da”) (155)
= ae, " (df, — 930,dz” + b,5dz") (156)
= ae, " (db, + (bus — 930,) dz”) (157)

we see that coordinate freedom on the e* = 0 submanifold leads to a change
in b,3. We use this freedom below to simplify the form of b,g.

19



4.0.3 Back to the structure equations
In the following subsections, we work systematically through the structure

equations to arrive at a final form for the connection.

The solder form structure equation We begin with eq.(123) for the
solder form,

de” = e’wj + wle” (158)
as follows. Let
wy = ay + Gy (159)
where we define af by
de” = e’af (160)

so that af is the usual z-dependent spin connection for the z-dependent
solder form e, “(x)dxz®. Then we have

0=e"B + wle (161)
Expanding in components, we find
B = =205 W, (162)
Checking,
e’ Bl +uwie = —e’2A% W, e + Wyebe”
= —¢ (6355 — ’r]adﬁcb) Wae + Wyebe®
= —Wyebe® + n“danWdebec + Wyebe®
=0 (163)
Thus,
Wi = aff — 20% W .e (164)

The dilatation equation Next, consider eq.(125) for the dilatation,

dwg = (1 — k) w'w, (165)
Expanding the right side,
dwy = (1—kK)w'w, (166)
d (Wsda”) = (1—k)(e, “dz*)ae, *(db, + (bus — 0s0,) dz”)(167)
= (1—k)a(dz"df, + (bus — 950,) da*da”) (168)

20



Choosing a = (1 — k)~ = const., setting
bag = bag — 030
and expanding the exterior derivative,

9°W3dl,da? 4 9,Wadr®da® = dzPdfs + bapsdaz®da’” (169)

we equate the coefficients of like terms

0aWs — 95Wa = bap — bpa (170)
Wy = —6° (171)

The second of these, eq.(171), may be integrated immediately to give
Ws = =0 + gs(x) (172)

This form is independent of the choice for the 63 coordinates. Substituting
this solution into eq.(170),

aagﬁ — 8gga = baﬁ — c%ea — bﬁa + 8a0,g (173)

Rearranging,
bap — bga = 05 (o — ga) — Oa (05 — gp) (174)

we see that the antisymmetric part of b,g is the curl of 8, — g,. Since the
choice of 4, is arbitrary, we may choose it to make this curl vanish by setting
the coordinate on the e* = 0 submanifolds to be

Yo = ga — Ja
With this choice b,s is symmetric and the Weyl vector takes the simple form
Ws = —yp

As an aside, we note that this transformation is a symplectic transformation
that relates the minimally coupled form of the momentum to the Newtonian
momentum. See [WHEELER JMP]|, where g, is interpreted as the electro-
magnetic vector potential, and the argument above shows that it is possible
to choose phase space coordinates to remove it.

21



Dropping the tilde on b,g, and using the solder form and inverse solder
form to exchange coordinate and orthonormal indices so that

bab = €, aeb Bbag
W, = e, “W,
the connection takes the form
Wi = af —20%W.e (175)
wt = e%(x) (176)

we = a(f,+by,)

= ae, "(z) dys + abge’ (177)

w) = W = —yzda’ (178)
o = (1—rk)"" (179)
by = ba (180)

This form is unchanged if we perform any z-dependent Lorentz transforma-
tion or scaling.

The curvature equation Now consider the curvature equation
éQgcdeced — 2kA%weet = dwf — wiw® — A% waet (181)
Define the curvature of of (e (z)) in the usual way,
=day — ool (182)
In particular, R} depends only on z. Expanding,
§Q§cdeced — 26A%we! = daj — aja® — 2A%w.e?
+dB, — apB8; — Byag — By 5¢ (183)
= RY—2A%w.e’
+dfy, — 07 — Byag — B0 (184)
or
QF ee’ = RY—2(1— k) A%w.e?
+dBy; — apB; — Byag — 57

22



The exterior derivative is
dg; = d(-2A4e, "W, e?)
= d(2A%e, "y.e’)
= 2A%de, Fy.e? +2A%e. “dy,e? +2A%e, My, de’
Then since w, = (1 — &) (f,4+by),

1
EQgcdeced = Ry —2AY (e, “dyu—i-bc)ed

+2A%de, Hy,et +2A%e. *dy,e
+2A%e, Fy,de’ — ap (—2A%e, “W#ed)
— (—2A%e, "W,e?) al
— (—2A%e, "W,e?) (—2A% e, "W,e%) (185)
The dy, dependent terms,
0= —2A%e, “dy,e’+2A%e, *dy,e’ (186)

cancel identically. Expanding the remainder, and using the antisymmetry of
the spin connection, ng.0p = —Mpe0y,

3 o ee’ = R —2A%b.e’
+2Ag5,de, “yued+2 abCe “yuded
—2ay, 3566 ye’ —20%e, Hy,.etal
—4A% e, dA“fef y,,eg

= Ry - (5355 - 77db) bce
+ (8305 — 1°“nay) e, "y,e?
+ (0565 — 1%nay) €, Myude’ (187)
—aze, Pyet —n*me, Myuaged
—e, Myueal — n“nae, My.eal
—e, "yuele, Yy + 0T nae, "y.ele, Vyet
—nan™e, "y.ele; Vy,e (188)

Setting y, = e, "y, this becomes
chde e? = Rj — (650 — n"nay) bee’ (189)
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+ (630, — n"nap) (de, " —age, ") ?Jued (190)
+ (6565 — n"“nav) ye (de” — eaf) (191)
— (5505 — nas"®) yeyee“e? (192)
1
+ (0503 = nas ™) 5ee (0" ygyn) €“e” (193)
= Ry —2A% (be’ + (e, Yy, IT") e’ (194)
1
+yeyeee’ — o lee (n ygyh) e ed> (195)

where we use
de, " —age, "+e, "I dz% = 0
v dz* = T¥
in the last step. Thus, I'¥ is the Christoffel connection corresponding to

solder form e® and spin connection af. For simplicity, define

1
Co = Cac€® =by + e, "y TH + y,y.e — 3 lac (1" yqun) € (196)

Then we have simply

1
or, in components,
Qgcd = chd - QAZEC% + 2Acb Ced (198>
= Rpg — (630, — naen™) cec + (6205 — Neo™®) Ced (199)
= Rpeq — 04Cc + nanc” .+ 0¢Cba — Nevc® 4 (200)

and can immediately solve for ¢, from the remaining curvature field equation:

0 = QG (201)
= Rbd + (n — 2) Cpd + ﬁdch c (202)
The trace gives ¢ = —ﬁR, so solving for ¢,
! Ryq ! R R
Cpg = ———— - =
bd = —9 2(n — 1>77bd bd
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This object is called the FEisenhart tensor. With this, the full spacetime
curvature 2-form is the Weyl (conformal) curvature 2-form of the spacetime
submanifold:

Q = Ry -2A%R.e’=C! (203)
1 1
§Qgcdeced = §C{fcdeced (204)
This result provides a convenient form for the Weyl curvature in terms of the

Riemann curvature 2-form and the Eisenhart 1-form.
We also have the form of b,,

1% C 1 C
bo = Ra =€, "yl = Yalie” + Sluc (" yyn) € (205)

The symmetry of the components, by, = by, is immediate.
We have now solved for the entire connection:

Wl = of —20%W,.e’ (206)
wt = e*(r) (207)
Wg = @ (fa+ba) (208>
w) = We = —yzda’ (209)
where
f,o= e, " (@) dys (211)
1
ba = 7za — €, Vy,u]:‘ﬁ - yaycec + énac (nghygyh) e’ (212)

All that is left is to solve the co-torsion field and structure equations.

Alternate version using covariant derivatives The calculation of the
previous section is complicated enough that it is worthwhile checking it inde-
pendently. We can do this by expressing the derivatives as covariant deriva-

tives.
Look at D ;)55 :

D(m,a)ﬁg = d; BZ - Oqfﬁg - Blc)ag
= d, (—2A%Wse°) — af (—2A%W4e°)
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D(x,a) 61()1

— (—2A%W,4e°)

— (6267 — n""nes) (dWae® + Wode®)

+af, (6208 — n*nec) Wae

+ (8565 — n“'nep) Waeal

—5§6§)idedee + n“dnebdedee — 6265deee
1%y Wade® + a0t W et — afn e W e
+6508W e — nng, Waetal

7 nepd, Wee® — d, Wye

—~Wyde® + 1., W,de®

+al‘dee“ + nbcagnadeee

+Wheal + neWaetn“al

7y (daWa — Wea§) € — (da Wy — Wy aff) e
—W, (de” —e‘al) + N e Wy (dee —ef a?)
nMey, (A Wy — Woat) € — 696 (d Wy — W,a5) e°
—2A% (D 0y Wa) €°

where we have used:

We also will need

By

de” = e‘al
b= Ohet = 205 Wee
DopoyWa = d,W,— W
= —dae, "yste, Pysaf

4AZ£ WASW,ece

(0260 =) W (030 — ) W e

(62670 — 1% e — S mac + 6man® ) Wy WV e
(Wded) (Wpe® — nepyn® W, e°) — (nf g WfWg) Nepee”

2 (Wded) AW e — (nfgwag) Nepe‘e”

2 (Wded) AW e — % (anWfWg) 2A%n.ee
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(214)

(215)
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= 2AY ((Wded) W, — % (nfngWg) ncded> e (222)

where we have used

2A§Ifn0dedee = (5351‘): - nacneb) ncdedee

mhae’e” + mae’e

= 2mpee’e” (223)
Now,
Lo end a acg od a
§chde e’ = R+ [—QAdbfce + d(y)ﬁb}
+ [—2A%bece’e? + Dy — G557 (224)

First, the mixed terms of the curvature equation must cancel:

(248G fet +dy By = —2A%e, “dyse’ +dyy,) (285, “yse’)
= 2AY (—e, "dyge’ +e, "dyge?) (225)
~ 0 (226)

This is satisfied identically, so the curvature equation is purely spacetime.
The final bracket is given by

-], = —2A%b.e? —2A% (DaWe) e

s e )

—2A% ((Weee) W, — 5

= —2A%Db.e?
1
—2A5 (D@,Q)Wc + (Wee) W, = 5 (n' W, W) nceee) e’(227)

Without loss of generality, we define a new 1-form c, as

Co = by + Dy Wy + (Wee) W, — % ("I WWy) nace” (228)
or equivalently,

ba = o~ Doy Wa — (Wee) Wa - 3 (W, muce®  (229)
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Then the full curvature structure equation becomes

1
—Qgcdeced = R§—2A§§cced

2
a . a ae ae
Dpea = bed — 2 (Adbcec - Ay Ced)

The field equation is
Q(l

bac

=0=Q;

cab

which is sufficient to determine c,. We have

Qgcd = Ryq + (TL — 2) Cpa + 77de§ =0

or
- (n - 2) Cbd — 77de$ = Ryq
Inverting,
2(n—1)c=—-R
S0
1 1
a = - Ra ——R a
Cob <n—2>( "T2m 1) "”)
= Rab

Using this form, we can find the full curvature:

Vot = Ry~ 2(Dfcee — M)
a 1 a a a a
= Ry — (E9) (0gRbe —naR* . — 0¢ Rpa + Ny R )
R
- O — O MbeTe
(n—1)(n—2) (02 b dMbcTed)

_ a
- Cbcd

(230)

(231)

(232)

(233)

(234)

(235)
(236)

(237)
(238)

(239)
(240)

The curvature is fully spacelike and equal to the Weyl curvature tensor. We

may also write

Chea = bed — 2 (A Rec — A Rea)
C; = Rj—2A5R.e’

in agreement with the previous result.
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The co-torsion We must still satisfy the following equations:

aAd (0 -0, = 0 (243)
_(n_Q) Qaea = neanchbca (244)
where
Qubg = 0 (245)
Qoy = 0 (246)
Qb =0 (247)

In addition we have the structure equation for the co-torsion, eq.(124):

1 b c b c b 0

§Qabce e’ + Qowpe’ = dw, — Wwp — Wawy (248)
It is convenient to first derive some relations.

Some useful relations Working in the orthonormal basis, we will need
certain exterior derivatives.

df, = de, “dys
= (ag-T7) dys

a

and
df, — a°f, + T°f, = 0
where
£ = e, () dys (249)
1
bo = Ra—e, YTl = Yayee” + 5Tlac (" ygyn) €° (250)

We also need

dy, = de, "y, +e, "dy,
= (_ea VI‘IVL + € HQZ) Yu + €q deﬂ
e, " (dyﬂ — I, + ybozZ)
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which follows from the vanishing covariant derivative of the solder form and
its inverse,

de” — e’af =

b
Jpe, “+e, "aps — €, “Fgﬁ =

o o O O

Oge, * — ¢ O‘O/C’ﬁ +e. Mg =
de, ?+e, 'T? —¢, Pab =
Check:
df, = d(e, "dyp)
= de, "dys
— (eb ﬂaZ —e, ‘Tﬁ) dys
= (a7 —T7)dys
= (o —To)f
or
df, —aif. +Tf. =0
and

dy, = de, "y, +e, "dy,
= (e, "Th+e, "ag)y,+e, "dy,
e, " (dyu — ybI‘Z + ybozZ)
e, * (dyu — v, + ybaZ)
= fo—e, "yl +uar,

Now we compute the co-torsion.

Vanishing cross torsion To begin, we compute the terms on the right
side:

1
-Q, = df, +db, —w’ (f+by) — (f,4b,) Wl

a
= aff, —Tf, — alf, + 20 Wee'f, — f,u)
+db, — a’by, + 2A% W,.e’b, — b,w)
= —If. + W,ebt, — n"ne W.ef, — f,1V,e°
+db, — a’b, + 2A% W.e'by, — bw)
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Now look at

1
db, = d (Ra — €, Vy#]:‘ﬁ - yaycec + énac (nghygyh) ec)
= dR,—de, "y Y —e, "dy, T} —e, "y,dI"

_dyaycec - yadyadwa + Nac (nghygdyh) e’

1
+=Nae (07" ygyn) de°

2
Combining,
1 c b be d ¢
—Qa = _Fafc + Wae fb -1 77dach fb o faWCe
a

—e, "dy, I — foy.e” — yodyadz® + nacnghygfhec
+dR, —de, "y, IY —e, "y, dI'"
te, "Yalyee” — ypalyce’
_nacnghygeh uyarzec + nacnghygybazec
1

5 tlae (17" ygun) de — alby + 205 Wee'by — bowp

Look at the f. terms only:

1
—Ql e = —Tof. — £.0° + W,ef, — n"na Weelf, — £,IW.e°
a
—f,y.e° — yofe® + nuen?y, fre’
=0
This requires
Qe =0

and all field equations are satisfied. Only the spacetime Bianchi, (24 = 0,
remains.

Spacetime co-torsion The remaining terms are:

1
o Qupce’e® = dR, —de, "y, T —e, "y, dT"
a

+e, "Yalyee” — ypalyce”

_nacnghygeh Myarzéec + nacnghygybazec
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1
+§nac (nghygyh) de® — Oébe

+2A% W.e'b, — b,w)
= dR, — ¢, "yuarlh —e, "y dly +e, Py L%

+e, "Yalyee” — ypalyce’

a

_nacnghygeh Myarzcec + nacnghygybazec
1

+5ac (07" ygyn) € o

—ozZRb + ozZeb "y, b+ agybycec

1
—0425% (" yyyn) €°

+2A5 W R, — 207 Weee, Yy, Tl
1
—2A% We.elyyy.e + 2AZZWCed§nbe (" yqyn) €

+Raybeb — €, Vyurﬁybeb

C 1 C
~YaYe ype’ + 5 lac (" yyyn) €“yre”

Collecting terms,

1
Q—Qabcebec = dR, — * Ry — n*ngW.e Ry — R Wye
a

—€q ﬁyu (dr‘é - F%F,‘f)

+% (7" ygun) (Nda€’yce” + Naceyse” — 2ngee’y.e°)
+FYpYeine” — YpYearne’

~Nac”" Yy + yayee' T

Do Yeye€'Ts + Naan)”yey.e T

The third, fourth and sixth lines each vanish identically while
Uacnbhygyb@iec =0
by the antisymmetry of the spin connection, and
Yaye€’TE = 0

by the symmetry of the Christoffel conneciton. With these simplifications,

1
o Quce’e® = dR, — a?Ry — "4 W.e Ry — R W3’
a
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—Cq ﬁyu (dl"g - I‘[Virﬁ)

= dR,— alRy + W, (R — 2A% R.€)

= D(m,a)Ra + Wbcz

The final Bianchi is identically satisfied:
1

0 = %Qabce“eb
= e"'D.o R, + e W,C?
= Do (€"R,) + W;Cle”
= 0

eC

5 Summary

The connection takes the final form

Wi = af —20%W,.e (251)
wt = e(x) (252)
we = a(fy+b,) (253)
w) = We = —yzda’ (254)

where

255

(255)

L 1 yn?

"= (n—1)<1+(a(n—1)—ﬁ)) (256)
(257)
(258)

f, = e, " (z) dyg 257

1
b, = Ri—e¢, "yuIY — Yayc€ + ~Nac (nghygyh) e’ 258

2

Notice that the strange looking I'# term in b, may be written a-covariantly
as

a « (e
Dyy, = Oz Yu — yar/w = _yaruu

Dy,u = d; Yp — yarloj = _yarfj

with the understanding that the p index of Dy, labels n different func-
tions, but does not transform as a vector. Is there a sense in which y,, does
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transform as a vector? Recall that the submanifolds spanned by y,, are flat

Riemannian geometries. If we assume the corresponding manifolds are R",

then the coordinate doubles as a vector. Then this term is fully covariant.
We also have

1 1
Riv=—7——= LR — =1 259
b (n—Q)( b 2(n—1) ﬁb) (259)

The curvatures are then

a 1 a c.d ac d
= RY - 2A%R.e? — 20k A%f e (261)
= C{ — 2arA%f.€" (262)
Q =0 (263)
Q. = D@aRa+ W,C (264)
= dR, — 'Ry + W, C: (265)
Q) = —re'w, = —are'f, = —ardr’dy;, (266)

Finally, the structure equations take the form

dwj = wiw?+ 2A%w.e” + Cf (267)
de" = e'w! +wie” (268)
dw, = wlwp+wew) + DayRa + W,Cl (269)
dw) = e%w, (270)

where

Cj = R} — 2A5R.e’

is the Weyl curvature.

6 Existence and Ricci flatness of spacetime

We now return to our second assumption: the minimial condition necessary
to guarantee the existence of a spacetime submanifold. This is provided by
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a second involution, this time of the co-solder form, w,. Setting w, = 0 we
have

0 = —w,
a

= e, p () dys +Ra —e, "y I

C 1 C
~Yale€” + Tac (™" yqyn) € (271)

together with the reduced structure equations

1
dw, = wgwg+§C§cdeced
de” = e'w +wle” = e’af
0 = DguaRe+WC
dwg = 0 (272)

To examine the consequences of these equations, we first examine eq.(271).
Eq.(271) has become a differential equation for a hypersurface, y, = y, (z) .
We first rewrite the derivative term as

e, ' (2) dys = dys —ysde, ”
= dy, — yge, ’6042 + yge, TV
where o is the spin connection compatible with the solder form e*(z). Re-

arranging, we have

C 1 C
dya = 10 + Yayee® — S (1"Ygt) € — Ra (273)

Because y, is the negative of the Weyl vector, eq.(273) is closely related to the
change in the Ricci and Eisenhart tensors under a conformal transformation

(7D,
Rab = Rab - nabD¢ - (n - 2) [(b;ab - ¢;a¢;b + nab¢;c¢;c]
éga - Ra + d¢;a - Qb;bag - ¢;a¢;cec + %nac (ngh¢;g¢;h) e’

where ¢, = D,¢ = 0,¢ and n is the dimension. Specifically, notice that if
we could replace y, with ¢., in eq.(273) we would have exactly the condition
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”}ga = 0, equivalent to the vacuum Einstein equation in the conformally
transformed basis. Therefore, eq(273), together with

Yodz® = y.e° = do (274)

guarantee the existence of a conformal gauge in which the vacuum Einstein
equation holds.

We now show that the reduced structure equations, eqs.(272) provide the
integrability conditions for eqs.(273) and (274). The integrability conditions
are given by the Poincaré lemma, d* = 0. Applying this first to eq.(273), we
have

0 = d%,
= dy,o + ybdo/; + dy,y.€e° + y.d (y.€°)
1
et Yy e — e (1" ygun) de” — dR,

Substituting for all occurrences of dy, we find after some cancellations,
0 =R, — DRy — Rayee” — (11w Re) Nade” + yad (yce)
Now, we substitute for the curvature 2-form,
Ry = Cf + 2A%R e
This reduces the integrability condition to
0 =5C) — DRg + yad (yc€°)
Turning now to the integrability condition for eq.(274), we have
0 = d%
= d(yce)

Combining these two conditions as the pair

»3Cl —DR, = 0
d(ye) = 0

and recalling that W, = —y,, we see that the reduced structure equations,
(272) provide exactly these conditions. Therefore, there exists a choice of
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the conformal gauge such that the Einstein equation holds on the w, = 0
submanifold. This same choice reduces the Weyl vector to zero and the
remaining structure equations to

1
a c..a a c.d
day = opof + —QC’bcde €

de = e’af

the first of which again shows that the Ricci tensor must vanish. In this gauge,
the spacetime is a Ricci flat, purely Riemannian spacetime. Therefore, the
reduced structure equations have as solutions the class of metrics conformally
equivalent to the set of solutions to the vacuum Einstein equation.

We close this section with one further observation: the second condition,
giving the integrability of y,, is unnecessary. If we contract the solder form
with dy, we have

(dy,)e* = d(y.e") — y,de”
= d (yaea) - yaebag
Substituting this into eq.(273) we find

a a C 1 C a
d (y.e) — yae’af = (ybaZ + Yoo — Silac (17" Yytn) € — Ra) e

= ybaze“ —R.e"

and therefore
d (yaea) =0

by the symmetry of the Eisenhart tensor.

The meaning of this additional result is clearest if we begin with the
expression for the change in the Eisenhart tensor under a conformal trans-
formation,

1
'ﬁa - Ra + d¢;a - gb;bag - ¢;a¢;cec + 577@(: (ngh¢;g¢;h> e’

Treating ¢, = ¢., as a vector, we see that
oC2 — DR, =0 (275)

is the integrability condition for the existence of a vector field ¢, such that
%?a = 0. Then, contracting with the solder form as above, we see that
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d (¢.e”) = 0 so that ¢, must be a gradient. Eq.(?7?) alone is therefore a suffi-
cient condition for the existence of a conformal transformation to a Ricci flat
spacetime. Szekeres |?]| uses the spinor representation to show that eq.(??)
may be written as a constraint on the curvatures which is independent of
Ya- It therefore follows from the results of [?] that eq.(??) is also necessary.
Incidently, our result shows the equivalence of certain well-known conditions:
the C-spaces (¢,C% — DR, = 0) of Szekeres |?| , the J-spaces (DR, = 0)
of Thompson ([?]), and conformally Ricci flat spaces. This follows because
Ricci-flatness implies the J- and C-conditions, while we have shown that the

C-condition implies conformal Ricci flatness.
These results were published in [BCYMG].

7 Limiting cases

We briefly consider two limiting cases of this solution — vanishing curvatures
and vanishing co-torsion.

7.1 Flat limit

The solution for vanishing curvature was first presented in [WHEELER
JMP]. Since the curvatures are

Q = R} - 2kA%w.e (276)
= C§+ 2axA%f.e’ (277)
Q=0 (278)
Q, = D@ayRa+C:W, (279)
(280)

98 = Kww® = —ardx®dy,
we set them to zero to find:

0 = Cj+2arA%f.e
= R} + 26Ajwee’

(281)
(282)
Q° (283)
(284)
(285)

D($,a)Ra - ybcg

0 = Kww”= —ardz*dy,
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Because of the independence of the ys, these require vanishing conformal
curvature and vanishing D, 4)R,. The final equation also implies vanishing
ak. Since

(286)

K
ak =
1—x

we see that ak = 0 implies k = 0. Therefore, with

o=~ (a5 =) 257

we find the constraint
0=vn*—B+a((n—1) (288)
on the initial action. In this case,
A} = (a(n —1) = B+ yn?)dF =0 (289)

as required by the field equations.
Finally, the connection may be written as:

= 20yl (290)

wt = e*=daz" (291)
1

we = dy,— (yayb - §naby2) e’ (292)

w) = We = —yzda’ (293)

This agrees with the flat solution [WHEELER JMP|.

We now explore two weaker conditions.

7.2 Torsion and Dilatation free solution

A weaker constraint is to set the dilatational curvature to zero as well as the
torsion. In this case, we have the general torsion-free solution together with
the condition

Q) = —ardz’dys =0 (294)

This can only be accomplished by setting




and hence k = 0 and a = 1. From the definition of k, this condition holds if
only if
0O=a(n—1)—F+n? (295)

implying a special subclass of linear Lagrange densities.
The connection then takes the final form

wi = af — 2A%W.e
wt = e%(z)
w, = f,+b,

0 _ c_ B
wy = Wee® = —yzda

and the curvatures reduce to

Q = Cj (296)
Qf =0 (297)
Q, = DgaRa.+WCl (298)
Q =0 (299)
7.3 Co-torsion free solution
Now consider the limit of vanishing co-torsion. From the curvatures,
Qp = Cf +2axA%f.e’ (300)
= RY +26A%w.e’ (301)
Q=0 (302)
Q. = DuaoR.+WC (303)
Q) = kww” = —ardz®dy, (304)
we set
0=, =Dy oRa— %C) (305)

and since there is no y-dependence in the first term, we require C® = 0 and
D(;,n)Ro = 0 seperately. The remaining curvatures then reduce to

Q = 2anA%f.e" (306)
Q) = —ardzdy, (307)
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The spacetime is conformally flat, so we can perform an z-dependent rescaling
to flat space. Then the Weyl vector becomes

w) = Wsdar® = (—ys + 9pp) da” (308)

and we can choose Cartesian coordinates, e* = dx®.
The connection is then

wp = 204 (—y + Ohp) € (309)
wt = e*=dz" (310)
1
Wy, = a (dya — YaYedz® + §y2naedx6) (311)

wy = Wee® =Wsda’
(—us + Do) da’ (312)

again agreeing with the previous solution.

8 Special Case

Now consider the special case when 25 — (n — 2) a = 0. In this case we find
that the spacetime dilatational curvature, Q9 , is now undetermined.
To find the full solution, we return to the relevant curvature field equa-
tions,
O'/anc + ﬁﬂgbc =0

and Bianchi identity:
bac — Qeap = — (0 = 2) Ay,

bac cab —

The symmetric and antisymmetric parts of the first combine with the Bianchi
identities to yield

gac + anb =0 (313>
Zac - Zab = - (TL - 2) ngc (314>

and now give no constraint on the spacetime dilatation.
The cross term of the curvature and dilatation are related as before,
except that A? and x take the simpler forms

Aj = 5 (a+29m) 5
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and

K:_(nil) (1+2?T"> (315)

The remaining field equations and Bianchi identities are manipulated as be-
fore with the same results. Collecting results we have:

Curvature:
Qe = 0 (316)
Q% = —2kAY (317)
anc + anb = O (318>
anc - anb = - (n - 2) ngc (319>
Torsion:
Q=0 (320)
Dilatation:
Q= 0 (321)
Qe = Ko} (322)
Co-torsion:
Q* =0 (323)
aAd (0 -0, = 0 (324)
ﬁ (chc - Qbaa) =0 (325)
- (Tl - 2) Qaea = UebWCfocb (326>
where
o+ 2ny
K= ———
n—1)a«

8.1 Differential part of the solution

First, check the dilatation Bianchi. We need to know the momentum piece
of the co-torsion before studying the involution of the solder form. We still
have w® = e’ (z) so

1
dwy = (1—k)e"w, + §ngcebeC (327)
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0 = (1—k)e"82, —|—d(298bcww) (328)

= (1-kr)e"Q, + a L Q0.e, “e’ele” (329)
+180‘§28bcdyae e’ (330)
+= QObcdebeC - 1ngcebdeC (331)

= (1-kK)e", + a e, “e’e’e’ (332)
+%8°‘ngcdyae e 4 QY de’e” (333)

Since
dy, = Anee” + Biw,

for some A,, and BS, and de’ is bilinear in the solder form, the only term
with two co-solder forms is
1 a be
5(1—%;)e Q, “wpw. =0
which implies
(1-r)Q, =0

Unless k = 1, the involution of the solder form goes through as for the generic
case, giving

wy = wpe’ (334)
W = e (335)
= e, “(z,y)dz® (336)
We = £+ bape’ (337)
= 0% (z,y) dya + bap (,y) da” (338)
W) = Wee = Wsda” (339)

Both e, * and f, ® must be invertible.

Again the structure equation for the solder form restricts the functional
dependence of the solder form to x only, e* = e® (z).

We can simplify the form of the co-solder form as well. First, observe that
there is total freedom in the choice of the coordinate functions 6,. Extracting
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an inverse solder form e, *(x) and a constant, a, from both 6, and b,g,

we = 0%, (z,y)dys + bag (z, ) dz”
aea # (8a9udya + b/tﬂ (iL‘, y) dxﬁ)

we rewrite the y, derivative of 0, as an exterior derivative on the full bicon-
formal space,

we = ae, " (0%0,dya + bys (z,y) dz”) (340)
= ae, " (df, — 930,dz" + b,sdz") (341)
= ae, " (db, + (bus — 930,) dz”) (342)

we see that coordinate freedom on the e* = 0 submanifold leads to a change
in b,3. We use this freedom below to simplify the form of b,g.

8.1.1 Back to the structure equations

In the following subsections, we work systematically through the structure
equations to arrive at a final form for the connection.

The solder form structure equation We begin with eq.(123) for the
solder form,
de® = e’wy + wle” (343)

This is solved for the spin connection as before, leading to
Wi = af — 20% W e (344)
The dilatation equation Next, consider eq.(125) for the dilatation,
1
dwg = (1 — k) ww, + 598,)0ebeC (345)
Expanding the right side,
1
dwy = (1—rK)w'w, + §ngcebec (346)
a (03 1
d (Wsd2") = (1—k)(e, “dz*)ae, *(db, + (bus — 050,) da”) + §quﬁdx(ﬁﬂﬂﬁ
1
= (1—k)a(da"dl, + (bus — 9s0,) dz"da”) + §quﬁdx“dx5 (348)
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Choosing a = (1 — k)~ = const., setting

Do = bap — O

and expanding the exterior derivative,
- 1
0°Wydf,da’ +0,Wsdz®dz® = dzPdfs+b,psdada’ +§anﬁdxadxﬂ (349)
we equate the coefficients of like terms

0aW5 — 0sWa = bag — bga + QUug (350)
Wy = —o° (351)

The second of these, eq.(351), may be integrated immediately to give
Ws = =05 + gs() (352)

This form is independent of the choice for the 63 coordinates. Substituting
this solution into eq.(350),

(%gﬁ — 8gga = baﬁ — 8590[ — bga + Ooﬁg + anﬁ (353)
Rearranging, we have
baﬁ - bﬁa + an,@ = aﬁ (901 - ga) — Oq (Qg - gﬁ) (354)

The best we can do now with our choice of 6, is make the right side vanish.
With this choice we have

bap — bga + Qe = 0 (355)

The result is still accomplished by setting the coordinate on the e* = 0
submanifolds to be

Ya = ga — Ya
With this choice the Weyl vector still takes the simple form

Ws = —yp

The only difference is that b, now has an antisymmetric part.
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The curvature equation Now consider the curvature equation

a c .d
§Qb0de e’ — 2k dbwce = dw) — wywy —Acb wge’

(356)

The first part of the calculation proceeds as for the generic case. Define the

curvature of o (e (z)) in the usual way,
=doj — apon
In particular, R} depends only on z. Expanding,
Q7 efe — 2uA%u.e? = daf —afal — 20%w.e’
5 “bed dbWe€ = b T Al dbWe
+dfy — a8 — Gyag — Gy5¢
= R - 2A%w.e’

+dBy — B¢ — By — By Be

or

1 a c..d a ac d

§chde e - R’b - 2 (1 - K)) dbwce

+dBy — apB8: — Byag — B, 8¢
The exterior derivative is
s = d(-20%e, "Wel)
=d (2Adb€c “Z/u d)

= 2A%de, My,e? +2A%e. “dy,e? +2A%e. "y, de’

Then since w, = (1 — k)" (f,4+ba) |

chde e! = Rj—2A% (e, “dy,+b) ef
F2A%de, My,ef + 245, Mdy,e!
+20%e, My,de’ — af (~2A4e, W)
—(—2 b€ “Wued)
— (—2A%e, "W,e?) (- A“fef "W,e)
The dy,, dependent terms,
0= —2A%c. “dy,e® +2A%e. *dy,e’
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cancel identically. Expanding the remainder, and using the antisymmetry of
the spin connection, 1g.Qp = —MNpe0ly,

chde e! = RY—2A%b.e’
+2A%de, "y,e +2Adbe ty,de?
—2ay 3266 hyet —205e, My.eta
—4A%e, A“fef Yy, e’
= R, - (535b — 7"Nap) bee?
+ (0505 — n"“nay) de,. "y,
+ (0405 — 1"“na) e *yude (362)
—aze, Py.et —n*mee, Nyuaged
—ey "yueal — n“nae, "y.e'a;
—e, "yuele, "yt +nTnae, Myele; Vyet
—nan™ e, Myuees "y, € (363)

Setting y, = e, *y,, this becomes

hac’e’ = Ry — (830, — n"nay) bee (364)
+ (8365 — n™nap) (de, * —ale, *)y,e” (365)

+ (6305 — 1"Nav) Ye (de —e‘ad) (366)

— (0505 — nawn™) yeyee e’ (367)

+ (0404 — navn™) %me (1" yqyn) €€ (368)

— R} —2A% (bee’ + (e, "y, Th) e’ (369)
+yeyeete’ — %nce (7" ygyn) € ed> (370)

where we use
no__ e I 12l o
de, ate, "+e, "I'V dz* = 0
B a u
re dz® = 1

in the last step. Thus, I'# is the Christoffel connection corresponding to
solder form e® and spin connection of. For simplicity, define

1
Cq = Coc€” = by +e, "y LY + yay.e’ — 577% (nghygyh) e (371)
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Then we have simply

1

chde e’ = R} — 2A%c e’ (372)

or, in components,
IC)Lcd = (blcd - 2Aaecec + 2Aab Ced (373)
= Rpq — (0305 — nan™) Cec + (6205 — 1evn™) Cea (374)
= chd — 5§cbc + UdbCa c -+ 5?de — ncbca d (375)
Dbea = Rppeq — 0gCoe + NavC® . + 0 Coa — Nen” 4 (376)

where
1

Cq = Coc€” = b, + €a Vy,urﬁ + Ya¥e€” = =Nac (nghygyh) e’ (377>

2

Here the calculation starts to differ, because the field equation still con-
tains the dilatational curvature. It is convenient to find the symmetric and
antisymmetric parts of ¢y,

1
Can) = bty + 9L + Yals = 57ab (7" ygyn)

Clat) = blap)

The field equation is

anc + Qcab =0 (378>
zac - gab = (n - 2) QObc (379)

Inserting the expression for the trace of the curvature,

bed = Rpea — Cbd + NapC® . + NCpa — Cha (380)

we find
0 = Qgcd —+ QC deb = QRECd + 27]dbCC c + (n — 2) (de + Cde381>
gac - (clab = (n - 2) QObc (TL - 2) b[bd] (382)

By eq.(?7?), the second equation is exactly satisfied, while the first gives the
Eisenhart tensor as before.
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1 1
oy = ——5 (Rbd — mﬁbdR) = Rpa

Clab) = —§ngc

With this, the full spacetime curvature 2-form is the Weyl (conformal) cur-
vature 2-form of the spacetime submanifold plus the spacetime dilatational
curvature,

@ = Rz—zA;;Rced—zAzg( Q) o (383)

= C“ + A%Q00 e“e’ (384)
1
chde e = Ecgcde Aacggce ‘ (385)
We also have the form of by,
14 C 1 C
bo = Ra =€ "YuL} = Yayie” + S7ac (17" ygtn) 2Q8ac (386)

The symmetry of the components, b,, = by, is as before, but now the anti-
symmetric part gives the spacetime dilatation.
We have now solved for the entire connection:

Wl = of —20%W,.e’ (387)
wt = e%(z) (388)
(389)
(390)

we = a(f+by,) 389
w) = We = —ysda’ 390
where

a = (1—r)" (391)

f. = e, 7(z) dys (392)

1 1
bo = Ra—e, "yl = Yayee” + Slac (" ygyn) € — Qﬁgacec (393)
1
— B anc c (394)

where b? denotes the generic form of b,. All that is left is to solve the co-
torsion field and structure equations.
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The co-torsion We must still satisfy the following equations:

aAd (0 -0, = 0

g-fac

- (n - 2) Qaea = neaancha
where
Q[abc]
b _
Q[ac] _— 0
0 =0

In addition we have the structure equation for the co-torsion, eq.(124):

1
§§2¢,1,CebeC + Qagwbec =dw, — wf;wb — wawg

(395)
(396)

(397)
(398)
(399)

(400)

Working in the orthonormal basis, we will need certain exterior deriva-

tives.
df, = de, "dys
= (a;-T7)dys
and
df, — o f. +T5f. =0
where

fll - ea 5(1;) dyﬁ

14 C 1 C 1 C
ba - Ra — €, yurﬁ — YaYc€ + Enac (nghygyh> € — Eﬂgace
1
= bg - §ancec

Using these relations, we compute the terms on the right side:

1
Q= df, +db, — ) (fitby) — (ftba) of

= off, — T°f, — a’f, + 2A% W.ef, — f,u)
+db, — a’b, + 2A% W.e'by, — bw)
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= —T¢f, + W,e'f, — n*ng W.e'f, — £,V e
1 1
v (b2 - g8 ) ol (b~ J0he)

1 1
AT (bg - 5ngcec) - (bg - §ancec> o

As for the generic case, when we expand db? the terms in f, cancel identically,
while the remaining b terms give the generic result,

1 1 1
%Qabcebec + aQalc’wbeC = dR,—de, "y I —e, "y, dI') — y,y.de® + 577@6 (nghygyh) de€
1 1 1
_§anc 7Mdy/ﬁec - §de8acec - 042 (bg - 59817060)

1 1
NS (bg - iggbcec) - (bg - §ancec> o
We therefore have

1
b_c b c b 0
§Qabce e’ + Q wpe’ = dw, — wwp — waw

so that
1 1
%Qabcebec + EQaé’bgeC = dR. — Ry — "4 W.e" Ry — R Wy’
—€4 ﬁyu (dFZ - FEI‘I;)
= dR,— a)Ry + W, (R) — 2A% R €%
= D(m,a)Ra + WbCZ - D(z,a,W)an

%Qagfbec = —%anc ’“eu bf,e¢
where 1
Log et = 0,
and

Dﬂga = dﬂga - wgggb - anwg
= dQg, — w g, — ,wp
= d€), — (b — (85W, + Wy — naW?) e) Q,
= D(x,a,W)an
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Imposing the field equation for the cross term,

0 = Qag - ch
a o | a o |
= _§Q0ac Meu b+ §Q00a ueu ’
= anm #e,u ’
so that
Qgca = Qgca (ZE)
and
Qe =0
Therefore,
1 b_c b 1 0 c
%Qabce € = D(w,a)Ra + Wbca - Dz,a,W §Qoace

9 Summary

The connection takes the final form

wi = af — 2A%W.e?
wt = e%(z)

w, = a(f,+b,)

wg = W= —ygda:ﬂ

where

a = (1—k)""
fll = €& B<I> dyﬁ

124 C 1 C
by = Ra—e, "I — yaye® + =nac (1" ygun) € —

2
1
= bg— 590 e

Oac

The curvatures are

92
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1
a a c.d ac d

= Ry —2A%R.e — 2anA%f.e?
= CY — 2akA%f.e"
Q=0
Oac

1
Q = DuaRo+WiCl —D,ow (590 ec)

Q) = —re'w, = —are’f, = —ardz’dy;,

10 Final special sub-case (in progress)
There is one final subcase which occurs when

k=1
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