
Torsion-free vacuum biconformal spaces

James T. Wheeler

May 21, 2002 - April 18, 2009

Abstract

Details of the calculation, dropping the matter assumptions in
JMP1997. The gauge choice here is also more powerful.
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1 The conformal group
We begin with a review of the conformal group, focussing on bosonic repre-
sentations. Consider a compactified, pseudo-Euclidean space with metric

ηab = diag (1, . . . , 1,−1, . . . ,−1)

having p positive and q negative eigenvalues, with p + q = n. For Euclidean
spaces (p = n) , the compactification is accomplished with a single point.
For Lorentzian spaces (q = 1) , the compactification requires a light cone at
infinity. The conformal group is defined as the set of transformations leaving
ηab unchanged except for a possible overall function. It may be shown that
SO (p+ 1, q + 1) provides a linear representation of this group. While the
considerations below apply to any values of p and q,

Geometrically, we interpret the (n+1)(n+2)
2

transformations of the confor-
mal group in the following way. First, n(n−1)

2
of the transformations corre-

spond to rotations, Lorentz transformations, or, in general, pseudo-rotations
in the underlying pseudo-Euclidean space. Next is a single dilatation, which
is accomplished by a simple scaling. These together comprise the homo-
thetic (or Weyl) subgroup. The remaining 2n transformations include n
translations and n special conformal transformations. The special conformal
transformations are translations of the compactifying point inverse to the
origin.

When the Lie algebra of the conformal group is expressed in differential
forms, we have connection 1-forms, ωab for pseudo-rotations, ω0

0 for dilata-
tions, ωa for translations and ωa for translations. These satisfy the Maurer-
Cartan structure equations,

dωab = ωcbω
a
c + 2∆ad

cbωdω
c (1)

dωa = ωbωab + ω0
0ω

a (2)
dωa = ωbaωb + ωaω

0
0 (3)

dω0
0 = ωaωa (4)

where
∆ad
cb ≡

1

2

(
δac δ

d
b − ηadηcb

)
and the antisymmetric wedge product is assumed between differential forms.
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Flat biconformal spaces are now formed as the quotient of the conformal
group by the homothetic group. The quotient provides a projection in the
sense that each homothetic equivalence class projects to one point of the
base manifold. We therefore have a fiber bundle with homothetic fibers and
a 2n-dim base manifold. The base manifold is spanned by ωa and ωa, now
called the solder form and co-solder form, respectively.

Flat biconformal space is a scale-invariant symplectic manifold. The di-
latational gauge field, ω0

0, called the Weyl vector, guarantees scale invariance,
while the corresponding structure equation,

dω0
0 = ωaωa (5)

is manifestly symplectic – the left side is closed while the right side is neces-
sarily non-degenerate.

Curved biconformal spaces are now generated by passing to the Cartan
structure equations. Starting from the Maurer-Cartan equations, general-
ize the connection. The use of a general connection in the Maurer-Cartan
equations leads to

dωab = ωcbω
a
c + 2∆ad

cbωdω
c + Ωa

b (6)
dωa = ωbωab + ω0

0ω
a + Ωa (7)

dωa = ωbaωb + ωaω
0
0 + Ωa (8)

dω0
0 = ωaωa + Ω0

0 (9)

where the 2-forms Ωa
b ,Ω

a,Ωa, and Ω0
0, called curvatures, characterize the

failure of the new connection to satisfy the original equations. These curva-
tures are subject to two conditions:

1. The curvatures must be horizontal. This means they must be 2-forms
in ωa and ωa only. The condition is equivalent to the demand that the
integral of the connection along any curve in the bundle is independent
of lifting on the bundle.

2. The equations must remain integrable. The integrability condition is
found by taking the exterior derivative of each structure equation, and
results in the (four) Bianchi identities:

0 = dΩa
b + Ωc

bω
a
c − ωcbΩa

c + 2∆ad
cbΩdω

c + 2∆ad
cbωdΩ

c (10)
0 = dΩa + Ωbωab − ω0

0Ω
a − ωbΩa

b + Ω0
0ω

a (11)
0 = dΩa + Ωb

aωb − ωbaΩb + Ωaω
0
0 − ωaΩ0

0 (12)
0 = dΩ0

0 + Ωaωa − ωaΩa (13)
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The 2-forms Ωa
b ,Ω

a,Ωa,Ω
0
0 are called the Lorentz curvature, torsion, co-

torsion and dilatational curvature, respectively.
The Cartan equations for several familiar submanifolds easily found from

these structure equations. If the co-torsion is zero, we may consistently set
the co-solder form to zero as well. This reduces the 2n-dim geometry to
an n-dim geomerty, on which we retain the structure equations for a Weyl
geometry with torsion. Renaming

ωa = ea

ω0
0 = W

Ωa = Ta

Ωa
b = Ra

b

we have

dωab = ωcbω
a
c + Ra

b (14)
dea = ebωab + Wea + Ta (15)
dW = Ω0

0 (16)

If, in addition, the torsion vanishes, we have the structure equations of a
Weyl geometry,

dωab = ωcbω
a
c + Ra

b (17)
dea = ebωab + Wea (18)
dW = Ω0

0 (19)

Finally, if the dilatational curvature vanishes we may choose a gauge in which
the Weyl vector vanishes, leaving the structure equations of an n-dim pseudo-
Riemannian geometry,

dωab = ωcbω
a
c + Ra

b (20)
dea = ebωab (21)

The remaining piece of the Lorentz curvature,

Ra
b =

1

2
Ra
bcde

ced

is the usual Riemann curvature 2-form. This reduction guides us in finding
the Einstein equation within more general biconformal spaces.
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Notice that without the restriction to the ωb = 0 submanifolds, each of
the curvatures has far more components. Generically,

ΩA
B =

1

2
ΩA
Bcdω

cωd + ΩAc
Bdωcω

d +
1

2
ΩAcd
B ωcωd

where
(
A
B

)
∈
{(

a
b

)
,
(
a
)
,
(
a

)
,
(
0
0

)}
. This is the reason that the reduction of

the field equations presented below is somewhat lengthy. We will call the
three terms of this expansion the spacetime curvature, cross-curvature, and
momentum curvature, respectively.

We note that in certain dimensions biconformal spaces may be supersym-
metrized. When n = 4, the supersymmetric structure equations become

dωab = ωcbω
a
c + 4∆ca

bdωcω
d + Pαβ [σa b]AB χ

A
αψ

B
β (22)

dωa = ωcωac + ωωa − 1

2
Pαβ [γa](AB) ψ

A
αψ

B
β (23)

dωa = ωcaωc + ωaω −
1

2
Pαβ [γa](AB) χ

A
αχ

B
β (24)

dω = 2ωaωa +
1

2
PαβQABχ

A
αψ

B
β (25)

These equations describe a superspace of 16 dimensions (8 bosonic + 8
fermionic). The bosonic sector agrees with eqs.(6-9) if we replace

√
2ωa → ωa

and
√

2ωa → ωa. Details of the supersymmetric case may be found in [AN-
DERSONWHEELER]

The remainder of our considerations refer to the purely bosonic case.

2 Field equations in biconformal space
In addition to the structure equations, we impose field equations derived
from an action functional. The most general such functional which is of zero
conformal weight and is linear in the biconformal curvatures is [WEHNER-
WHEELER]:

S =

∫ (
αΩa

b + βΩ0
0δ
a
b + γωbω

a
)
εac···dε

be···fωe · · ·ωfωc · · ·ωd

See [WW] for details.
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The field equations follow by varying S with respect to each of the con-
nection 1-forms. Generically we have

δωAB = fABaω
a + gAaB ωa

where the coefficients of the variation, fABaωa and gAaB , are arbitrary. Each of
the four connection types therefore leads to two independent field equations.

The field equations following from the linear action are:

β(Ωa
ba − 2Ω d

caδ
ca
db) = 0 (26)

β(Ω ba
a − 2Ωcd

aδ
ab
dc) = 0 (27)

α(−∆af
egΩb

ab + 2∆cf
eb δ

ab
dgΩ

d
ac ) = 0 (28)

α(−∆gf
eb Ω ab

a + 2∆af
ed δ

gc
abΩ

bd
c) = 0 (29)

αΩa
bac + βΩ0

0bc = 0 (30)
2(αΩec

cd + βΩ0e
0d)δ

ad
eb + Λa

b = 0 (31)
αΩbac

a + βΩ0bc
0 = 0 (32)

2(αΩce
dc + βΩ0e

0d)δ
ad
eb + Λa

b = 0 (33)

and we have defined

Λa
b ≡ (α(n− 1)− β + γn2)δab (34)

Equations (6-9) and (26-33) define a gravitational field theory on bicon-
formal space. We seek a description of the torsion-free solutions to these
equations.

Our derivation proceeds in two parts. First, the field equations, vanishing
torsion, Ωa = 0, and the Bianchi identities, provide algebraic constraints
on the biconformal curvatures. These may be manipulated to simplify the
form of the curvatures. Second, the structure equations may be partially
integrated to further specify the solution. These parts are presented in the
next two sections.

3 Algebraic part of the solution
Setting the torsion to zero,

Ωa = 0

7



the structure equations reduce to

Ωa
b = dωab − ωcbωac − 2∆ad

cbωdω
c (35)

0 = dωa − ωbωab − ω0
0ω

a (36)
Ωa = dωa − ωbaωb − ωaω0

0 (37)
Ω0

0 = dω0
0 − ωaωa, (38)

while the first four field equations (eqs. 26-29) reduce to:

−2βΩ d
caδ

ca
db = 0 (39)

βΩ ba
a = 0 (40)

2α∆cf
eb δ

ab
dgΩ

d
ac = 0 (41)

−α∆gf
eb Ω ab

a = 0 (42)

The remaining field equations are unchanged.

3.1 Bianchi identity for vanishing torsion

First, vanishing torsion leaves the corresponding Bianchi identity algebraic,

0 = ωbΩa
b −Ω0

0ω
a (43)

This has components

0 = Ωa
[bcd] − δa[bΩ0

0cd]

0 = Ωac
bd − Ωac

db − δabΩ0c
0d + δadΩ

0c
0b

0 = Ωacd
b − δabΩ0cd

0 (44)

There are three independent trace equations. The ab trace of the first gives

Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc (45)

the ab trace of the second gives

Ωac
da = − (n− 1) Ω0c

0d (46)

while the ab trace of the third gives

Ω0cd
0 = 0 (47)
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from which it immediately follows that

Ωacd
b = 0 (48)

Consider eq.(46). Lower the first index and cycle the indices.

0 = ηcfΩ
fa
bd − ηcfΩ

fa
db − ηcbΩ

0a
0d + ηcdΩ

0a
0b

0 = ηdfΩ
fa
cb − ηdfΩ

fa
bc − ηdcΩ

0a
0b + ηdbΩ

0a
0c

0 = ηbfΩ
fa
dc − ηbfΩ

fa
cd − ηbdΩ

0a
0c + ηbcΩ

0a
0d (49)

Now add the first two and subtract the third, using the antisymmetry of
ηcfΩ

fa
bd on cb :

0 = 2ηdfΩ
fa
cb − 2ηbcΩ

0a
0d + 2ηbdΩ

0a
0c (50)

or

Ωda
cb = ηdeηbcΩ

0a
0e − δdbΩ0a

0c

= −2∆de
bcΩ

0a
0e (51)

As a check, we note that the trace reproduces eq.(46)

Ωba
cb = ηbeηbcΩ

0a
0e − δbbΩ0a

0c

= Ω0a
0c − nΩ0a

0c (52)

as required. Summarizing:

Ωacd
b = 0 (53)

Ω0cd
0 = 0 (54)

Ωab
cd = −2∆ae

dcΩ
0b
0e (55)

Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc (56)

Notice that, with the exception of the spacetime term, Ωa
bcd, the curvature is

totally determined by the dilatation.
The remaining Bianchi identities are still differential relations among the

curvatures, rather than algebraic constraints. This completes the most useful
consequences of the Bianchi identites.

3.2 Field equations for curvature

Next we look at the field equations for the curvatures (eqs. 30,31, and 33).
Eq.(32) is identically satisfied by the Bianchi identities.
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3.2.1 Eq.(30)

The symmetric and antisymmetric parts of eq.(30) are

Ωa
bac + Ωa

cab = 0 (57)
α (Ωa

bac − Ωa
cab) = −2βΩ0

0bc (58)

Combining the second of these with eq.(56) yields

[2β − (n− 2)α] Ω0
0bc = 0 (59)

which, in turn, holds if and only if one of the factors vanishes. Thus, we
have:

Case 1 (Generic): For generic coupling constants in the action we must
have

Ω0
0bc = 0 (60)

Case 2: (Exceptional): An exceptional case occurs if the coupling con-
stants are related by

2β = (n− 2)α (61)

We will examine both cases after studying the remaining field equations.

3.2.2 Equations (31) and (33)

Now consider eqs.(31 and (33). The difference between these shows that

Ωab
ca = Ωba

ac (62)

From the previous Bianchi result, eq.(55),

Ωab
cd = −2∆ae

dcΩ
0b
0e = −δadΩ0b

0c + ηaeηdcΩ
0b
0e

we find the traces

Ωab
ca = −nΩ0b

0c + Ω0b
0c

Ωba
ac = −δbcΩ0a

0a + ηbeηcaΩ
0a
0e

and the double trace
Ωab
ba = −(n− 1)Ω0b

0b
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From eq.(62), we have the equality of the two traces,

−nΩ0b
0c + Ω0b

0c = −δbcΩ0a
0a + ηbeηcaΩ

0a
0e

ηdcΩ
0a
0a = (n− 1) ηdbΩ

0b
0c + ηcaΩ

0a
0d

so symmetrizing and antisymmetrizing, we find

nηdbΩ
0b
0c + nηcbΩ

0b
0d = 2ηdcΩ

0a
0a (63)

(n− 2)
(
ηdbΩ

0b
0c − ηcbΩ0b

0d

)
= 0 (64)

so for n 6= 2 we get simply

Ω0a
0b =

1

n
δabΩ

0c
0c (65)

Defining a function

κ ≡ 1

n
Ω0c

0c (66)

we have simply
Ω0a

0b = κδab (67)

For n = 2 the antisymmetric part remains undetermined, so we may write

Ω0a
0b = κδab + ∆ac

dbΩ
0d
0c (68)

Case 1: n > 2 Now, using eq.(55) from the torsion Bianchi identity, we
find the full cross-curvature,

Ωab
cd = −2∆ae

dcΩ
0b
0e (69)

= −2κ∆ab
dc (70)

From the remaining field equation involving the cross term of the curvature,
eq.(31),

2
(
αΩec

cd + βΩ0e
0d

)
δadeb + Λa

b = 0 (71)

we now find
(n− 1) (α (n− 1)− β)κδab + Λa

b = 0 (72)

where
Λa
b ≡

(
α(n− 1)− β + γn2

)
δab (73)
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Therefore,

κ = − 1

(n− 1)
− γn2

(n− 1) (α (n− 1)− β)
(74)

= − 1

(n− 1)

(
1 +

γn2

α (n− 1)− β

)
(75)

There is one exceptional case, when

α (n− 1)− β = 0

In this case,
0 = Λa

b ≡
(
α(n− 1)− β + γn2

)
δab = γn2δab (76)

so the exceptional case, eq.(61), can only occur if γ = 0 in the original
Lagrangian.

Collecting results for n > 2 we have:

Ωab
cd = −2κ∆ab

dc (77)
Ω0a

0b = κδab (78)
Ωacd
b = 0 (79)

Ω0cd
0 = 0 (80)

κ = − 1

(n− 1)

(
1 +

γn2

α (n− 1)− β

)
(81)

and either the generic case

Ωa
bac = 0

Ω0
0bc = 0

or the special case,

α (n− 1)− β = 0

γ = 0

Case 2: n = 2 If n = 2 then

Ω0a
0b =

1

2
δabΩ

0c
0c + ∆ac

dbΩ
0d
0c (82)
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replaces eq.(78).
Check the n = 2 case: Define a function

κ ≡ 1

2
Ω0c

0c (83)

then
Ω0a

0b = κδab + ∆ac
dbΩ

0d
0c (84)

Now, using eq.(55) from the torsion Bianchi identity, we find the full cross-
curvature,

Ωab
cd = −2∆ae

dcΩ
0b
0e (85)

= −2∆ae
dc

(
κδbe + ∆bg

feΩ
0f
0g

)
(86)

= −2κ∆ab
dc − 2∆ae

dc∆
bg
feΩ

0f
0g (87)

From the remaining field equation involving the cross term of the curva-
ture, eq.(31),

2
(
αΩec

cd + βΩ0e
0d

)
δadeb + Λa

b = 0 (88)

we now find

2
(
α
(
−2κ∆ec

dc − 2∆em
dc ∆cg

fmΩ0f
0g

)
+ β

(
κδed + ∆eg

fdΩ
0f
0g

))
δadeb + Λa

b = 0(89)(
−4ακ∆ec

dc − 4α∆em
dc ∆cg

fmΩ0f
0g + 2β

(
κδed + ∆eg

fdΩ
0f
0g

))
δadeb + Λa

b = 0(90)

The extra terms reduce to

−4α∆em
dc ∆cg

fmΩ0f
0gδ

ad
eb + 2β∆eg

fdΩ
0f
0gδ

ad
eb = (−α + β) ∆ag

fbΩ
0f
0g

so the full expression is

(α− β)κδab + (−α + β) ∆ag
fbΩ

0f
0g + Λa

b = 0

and the symmetric and antisymmetric parts now give two equations,

(α− β)κδab + Λa
b = 0 (91)

(−α + β) ∆ag
fbΩ

0f
0g = 0 (92)

Therefore, κ has the same constant value as before and the antisymmetric
part of the cross-term vanishes,

κ = −
(

1 +
4γ

α− β

)
(93)

Ω0a
0b = κδab (94)
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unless α = β. In this one exceptional case,

α = β

In this case, we find
0 = Λa

b ≡ 4γδab (95)
so the exceptional case, α = β, can only occur if γ = 0 in the original
Lagrangian. In this one special case, both κ and the antisymmetric part of
the cross-term of the dilatational curvature remain arbitrary.

This completes the algebraic part of the solution of the curvature equa-
tions.

3.2.3 Co-torsion field equations

Next, we turn to the remaining field equations which now contain only co-
torsion terms when we set the torsion to zero:

2βΩ d
caδ

ca
db = 0 (96)

βΩ ba
a = 0 (97)

2α∆cf
eb δ

ab
dgΩ

d
ac = 0 (98)

−α∆gf
eb Ω ab

a = 0 (99)

The second and fourth equations show that Ω ab
a = 0. Now consider the

remaining two:

β (Ω a
ab − Ω a

ba ) = 0 (100)
α∆cf

eb

(
δbgΩ

a
ac − δagΩ b

ac

)
= 0 (101)

Expanding,
Ω f
ge − δfgΩ a

ae − ηebηcf
(
Ω b
gc − δbgΩ a

ac

)
= 0 (102)

we trace fg:
− (n− 2) Ω a

ae = ηebη
cfΩ b

fc (103)
Summarizing:

Ω ab
a = 0 (104)

β (Ω a
ab − Ω a

ba ) = 0 (105)
α∆cf

eb

(
δbgΩ

a
ac − δagΩ b

ac

)
= 0 (106)

− (n− 2) Ω a
ae = ηebη

cfΩ b
fc (107)
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3.3 Summary of algebraic part:

We first summarize the generic case. For all n and generic values of the
constants α, β and γ, we have:

Curvature:

Ωacd
b = 0 (108)

Ωab
cd = −2κ∆ab

dc (109)
Ωa
cab = 0 (110)

Torsion:
Ωa = 0 (111)

Dilatation:

Ω0cd
0 = 0 (112)

Ω0a
0b = κδab (113)

Ω0
0bc = 0 (114)

Co-torsion:

Ω ab
a = 0 (115)

α∆cf
eb

(
Ω b
gc − δbgΩ a

ac

)
= 0 (116)

β (Ω c
cb − Ω a

ba ) = 0 (117)
− (n− 2) Ω a

ae = ηebη
cfΩ b

fc (118)

where
κ = − 1

(n− 1)

(
1 +

γn2

α (n− 1)− β

)
(119)
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There is one special case, when 2β − (n− 2)α = 0. In this case, the
spacetime dilatational curvature, Ω0

0bc, is undetermined and

Ωa
bac + Ωa

cab = 0 (120)
α (Ωa

bac − Ωa
cab) = −2βΩ0

0bc (121)

4 Differential part of the solution
Now we look at the structure equations. We begin with the generic case in
its entirety. In a subsequent Section we consider the special cases above.

First, we substitute what we know of the curvatures into the structure
equations:

1

2
Ωa
bcdω

cωd − 2κ∆ac
dbωcω

d = dωab − ωcbωac − 2∆ad
cbωdω

c (122)

0 = dωa − ωbωab − ω0
0ω

a (123)
Ωa = dωa − ωbaωb − ωaω0

0 (124)
κωaω

a = dω0
0 − ωaωa, (125)

with the additional condition
Ωa
bac = 0 (126)

for the curvature and

Ω ab
a = 0 (127)

α∆cf
eb

(
Ω b
gc − δbgΩ a

ac

)
= 0 (128)

β (Ω c
cb − Ω a

ba ) = 0 (129)
− (n− 2) Ω a

ae = ηebη
cfΩ b

fc (130)

for the co-torsion. The coefficient κ is constant.

4.0.1 Dilatation

Let’s look at the dilatation. First, in the generic case (where Ω0
0bc = 0) we

have

κωaω
a = dω0

0 − ωaωa (131)
dω0

0 = (1− κ)ωaωa (132)
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with Bianchi identity,

0 = d ((1− κ)ωa ωa) (133)
= (1− κ) dωaωa − (1− κ)ωadωa (134)
= (1− κ)

(
ωbωab + ω0

0ω
a
)
ωa

− (1− κ)ωa
(
Ωa + ωbaωb + ωa ω

0
0

)
(135)

= − (1− κ)ωaΩa (136)

so that
− (1− κ)ωaΩa = 0 (137)

Evidently, we have another special case if κ = 1. Using eq.(75) for κ, this
only happens when

n− 1 = −1− γn2

α (n− 1)− β
(138)

α (n− 1)− β = −γn (139)

Once again we have a special choice of the constants in the action. We will
therefore treat the κ = 1 case at the end with the other special cases.

Continuing with the generic case. From eq.(137) and κ 6= 1, it follows
that

Ω[abc] = 0 (140)
Ω b

[ac] = 0 (141)

Ω bc
a = 0 (142)

In addition we have

α∆cf
eb

(
Ω b
gc − δbgΩ a

ac

)
= 0 (143)

− (n− 2) Ω a
ae = ηeaη

bcΩ a
bc (144)
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4.0.2 The solder form and its involution

Next consider the torsion equation. With the torsion vanishing, the solder
form ωa is in involution,

dωa = ωbωab + ω0
0ω

a

Therefore, by the Fröbenius theorem, there exist n coordinates such that

ωa ≡ ea = e a
µ dxµ

where we introduce the usual notation for the solder form to denote this
particular class of coordinate choices. Holding xµ constant so that ωa = 0
gives a set of submanifolds spanned by the co-solder form, ωa. On these
submanifolds, the structure equations reduce to

dωab = ωcbω
a
c (145)

dωa = ωbaωb + ωaω
0
0 (146)

dω0
0 = 0 (147)

These equations describe a flat Weyl geometry. By performing a suitable
local Lorentz transformation and local dilatation, we may choose a basis for
this geometry with vanishing connection,

ωab = 0

ω0
0 = 0 (148)

The first and third equations are satisfied, while the second becomes

dωa = 0

with solution
ωa = dθa = ∂αθadyα

We denote this restriction of the co-solder form by fa. Notice that the ex-
terior derivative is restricted to the yα coordinates since we are still on the
submanifold. Since we got to this form by making a Lorentz transformation
and a dilatation, holding x fixed, the transformations required may be dif-
ferent at different values of xµ. The functions θa therefore depend on all 2n
coordinates.
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Having made a partial gauge choice, we may now allow xµ to vary. Each
connection or basis 1-form will acquire a piece proportional to ea. The forms
therefore extend back to a basis for the full biconformal space in the form

ωab = ωabce
c (149)

ωa = ea (150)
= e a

α (x, y) dxα (151)
ωa = fa + babe

b (152)
= ∂αθa (x, y) dyα + baβ (x, y) dxβ (153)

ω0
0 = Wce

c = Wβdx
β (154)

Both e a
α and f α

a must be invertible.
We can immediately restrict the functional dependence of the solder form

by examining its structure equation with this form of the connection:

dea = ebωab + ω0
0e

a

= ωabce
bec +Wbe

bea

Since the right side is quadratic in the solder form, the ∂αea (x, y) dyα con-
tribution to the exterior derivative on the left vanishes. Therefore, the solder
form depends on x only, ea = ea (x).

We can simplify the form of the co-solder form as well. First, observe that
there is total freedom in the choice of the coordinate functions θa. Extracting
an inverse solder form e µ

a (x) and a constant, a, from both θa and baβ,

ωa = ∂αθa (x, y) dyα + baβ (x, y) dxβ

= ae µ
a

(
∂αθµdyα + bµβ (x, y) dxβ

)
we rewrite the yα derivative of θµ as an exterior derivative on the full bicon-
formal space,

ωa = ae µ
a

(
∂αθµdyα + bµβ (x, y) dxβ

)
(155)

= ae µ
a

(
dθµ − ∂βθµdxβ + bµβdx

β
)

(156)
= ae µ

a

(
dθµ + (bµβ − ∂βθµ) dxβ

)
(157)

we see that coordinate freedom on the ea = 0 submanifold leads to a change
in bαβ. We use this freedom below to simplify the form of bαβ.
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4.0.3 Back to the structure equations

In the following subsections, we work systematically through the structure
equations to arrive at a final form for the connection.

The solder form structure equation We begin with eq.(123) for the
solder form,

dea = ebωab + ω0
0e

a (158)

as follows. Let
ωab = αab + βab (159)

where we define αab by
dea = ebαab (160)

so that αab is the usual x-dependent spin connection for the x-dependent
solder form e a

α (x)dxα. Then we have

0 = ebβab + ω0
0e

a (161)

Expanding in components, we find

βabc = −2∆ad
cbWd (162)

Checking,

ebβab + ω0
0e

a = −eb2∆ad
cbWde

c +Wbe
bea

= −eb
(
δac δ

d
b − ηadηcb

)
Wde

c +Wbe
bea

= −Wbe
bea + ηadηcbWde

bec +Wbe
bea

= 0 (163)

Thus,
ωab = αab − 2∆ac

dbWce
d (164)

The dilatation equation Next, consider eq.(125) for the dilatation,

dω0
0 = (1− κ)ωaωa (165)

Expanding the right side,

dω0
0 = (1− κ)ωaωa (166)

d
(
Wβdx

β
)

= (1− κ) (e a
α dxα) ae µ

a

(
dθµ + (bµβ − ∂βθµ) dxβ

)
(167)

= (1− κ) a
(
dxµdθµ + (bµβ − ∂βθµ) dxµdxβ

)
(168)
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Choosing a = (1− κ)−1 = const., setting

b̃αβ = bαβ − ∂βθα

and expanding the exterior derivative,

∂αWβdθαdx
β + ∂αWβdx

αdxβ = dxβdθβ + b̃αβdx
αdxβ (169)

we equate the coefficients of like terms

∂αWβ − ∂βWα = b̃αβ − b̃βα (170)
∂αWβ = −δβα (171)

The second of these, eq.(171), may be integrated immediately to give

Wβ = −θβ + gβ(x) (172)

This form is independent of the choice for the θβ coordinates. Substituting
this solution into eq.(170),

∂αgβ − ∂βgα = bαβ − ∂βθα − bβα + ∂αθβ (173)

Rearranging,
bαβ − bβα = ∂β (θα − gα)− ∂α (θβ − gβ) (174)

we see that the antisymmetric part of bαβ is the curl of θα − gα. Since the
choice of θα is arbitrary, we may choose it to make this curl vanish by setting
the coordinate on the ea = 0 submanifolds to be

yα = θα − gα

With this choice bαβ is symmetric and the Weyl vector takes the simple form

Wβ = −yβ

As an aside, we note that this transformation is a symplectic transformation
that relates the minimally coupled form of the momentum to the Newtonian
momentum. See [WHEELER JMP], where gα is interpreted as the electro-
magnetic vector potential, and the argument above shows that it is possible
to choose phase space coordinates to remove it.
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Dropping the tilde on bαβ, and using the solder form and inverse solder
form to exchange coordinate and orthonormal indices so that

bab = e α
a e β

b bαβ

Wa = e α
a Wα

the connection takes the form

ωab = αab − 2∆ac
dbWce

d (175)
ωa = ea(x) (176)
ωa = a (fa+ba)

= ae β
a (x) dyβ + ababe

b (177)
ω0

0 = Wce
c = −yβdxβ (178)

a = (1− κ)−1 (179)
bab = bba (180)

This form is unchanged if we perform any x-dependent Lorentz transforma-
tion or scaling.

The curvature equation Now consider the curvature equation

1

2
Ωa
bcde

ced − 2κ∆ac
dbωce

d = dωab − ωcbωac −∆ad
cb ωde

c (181)

Define the curvature of αab (e (x)) in the usual way,

Ra
b = dαab − αcbαac (182)

In particular, Ra
b depends only on x. Expanding,

1

2
Ωa
bcde

ced − 2κ∆ac
dbωce

d = dαab − αcbαac − 2∆ac
dbωce

d

+dβab − αcbβac − βcbαac − βcbβac (183)
= Ra

b − 2∆ac
dbωce

d

+dβab − αcbβac − βcbαac − βcbβac (184)

or
1

2
Ωa
bcde

ced = Ra
b − 2 (1− κ) ∆ac

dbωce
d

+dβab − αcbβac − βcbαac − βcbβac
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The exterior derivative is

dβab = d
(
−2∆ac

dbe
µ

c Wµe
d
)

= d
(
2∆ac

dbe
µ

c yµe
d
)

= 2∆ac
dbde

µ
c yµe

d + 2∆ac
dbe

µ
c dyµe

d + 2∆ac
dbe

µ
c yµded

Then since ωa = (1− κ)−1 (fa+ba) ,

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

db (e µ
c dyµ+bc) ed

+2∆ac
dbde

µ
c yµe

d + 2∆ac
dbe

µ
c dyµe

d

+2∆ac
dbe

µ
c yµded − αcb

(
−2∆ae

dce
µ

e Wµe
d
)

−
(
−2∆ce

dbe
µ

e Wµe
d
)
αac

−
(
−2∆ce

dbe
µ

e Wµe
d
) (
−2∆af

gc e
µ

f Wµe
g
)

(185)

The dyµ dependent terms,

0 = −2∆ac
dbe

µ
c dyµe

d + 2∆ac
dbe

µ
c dyµe

d (186)

cancel identically. Expanding the remainder, and using the antisymmetry of
the spin connection, ηdcαcb = −ηbcαcd,

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

dbbce
d

+2∆ac
dbde

µ
c yµe

d + 2∆ac
dbe

µ
c yµded

−2αcb∆
ae
dce

µ
e yµe

d − 2∆ce
dbe

µ
e yµe

dαac
−4∆ce

dbe
µ

e yµe
d∆af

gc e
ν

f yνe
g

= Ra
b − (δadδ

c
b − ηacηdb) bce

d

+ (δadδ
c
b − ηacηdb) de µ

c yµe
d

+ (δadδ
c
b − ηacηdb) e µ

c yµded (187)
−αebe µ

e yµe
a − ηaeηbce µ

e yµα
c
de
d

−e µ
b yµe

cαac − ηcaηdbe µ
e yµe

dαec
−e µ

b yµe
de ν
d yνe

a + ηefηdbe
µ

e yµe
de ν
f yνe

a

−ηdbηafe µ
e yµe

de ν
f yνe

e (188)

Setting ya = e µ
a yµ, this becomes

1

2
Ωa
bcde

ced = Ra
b − (δadδ

c
b − ηacηdb) bce

d (189)
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+ (δadδ
c
b − ηacηdb) (de µ

c − αece µ
e ) yµe

d (190)
+ (δadδ

c
b − ηacηdb) yc

(
ded − eeαde

)
(191)

− (δcbδ
a
d − ηdbηac) ycyeeeed (192)

+ (δcbδ
a
d − ηdbηca)

1

2
ηce
(
ηghygyh

)
eeed (193)

= Ra
b − 2∆ac

db

(
bce

d + (e ν
c yµΓ

µ
ν ) ed (194)

+ycyee
eed − 1

2
ηce
(
ηghygyh

)
eeed

)
(195)

where we use

de µ
c − αece µ

e + e ν
c Γµναdx

α = 0

Γµναdx
α = Γµ

ν

in the last step. Thus, Γµνα is the Christoffel connection corresponding to
solder form ea and spin connection αec. For simplicity, define

ca = cace
c = ba + e ν

a yµΓ
µ
ν + yayce

c − 1

2
ηac
(
ηghygyh

)
ec (196)

Then we have simply

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

dbcce
d (197)

or, in components,

Ωa
bcd = Ra

bcd − 2∆ae
dbcec + 2∆ae

cb ced (198)
= Ra

bcd − (δadδ
e
b − ηdbηae) cec + (δac δ

e
b − ηcbηae) ced (199)

= Ra
bcd − δadcbc + ηdbc

a
c + δac cbd − ηcbca d (200)

and can immediately solve for ca from the remaining curvature field equation:

0 = Ωc
bcd (201)

= Rbd + (n− 2) cbd + ηdbc
c

c (202)

The trace gives c = − 1
2(n−1)

R, so solving for cab,

cbd = − 1

n− 2

(
Rbd −

1

2 (n− 1)
ηbdR

)
≡ Rbd
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This object is called the Eisenhart tensor. With this, the full spacetime
curvature 2-form is the Weyl (conformal) curvature 2-form of the spacetime
submanifold:

Ωa
b = Ra

b − 2∆ac
dbRce

d = Ca
b (203)

1

2
Ωa
bcde

ced =
1

2
Ca
bcde

ced (204)

This result provides a convenient form for the Weyl curvature in terms of the
Riemann curvature 2-form and the Eisenhart 1-form.

We also have the form of ba,

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec (205)

The symmetry of the components, bab = bba is immediate.
We have now solved for the entire connection:

ωab = αab − 2∆ac
dbWce

d (206)
ωa = ea(x) (207)
ωa = a (fa+ba) (208)
ω0

0 = Wce
c = −yβdxβ (209)

where

a = (1− κ)−1 (210)
fa = e β

a (x) dyβ (211)

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec (212)

All that is left is to solve the co-torsion field and structure equations.

Alternate version using covariant derivatives The calculation of the
previous section is complicated enough that it is worthwhile checking it inde-
pendently. We can do this by expressing the derivatives as covariant deriva-
tives.

Look at D(x,α)β
a
b :

D(x,α)β
a
b = dx β

a
b − αcbβac − βcbα

a
c

= dx
(
−2∆ad

cbWde
c
)
− αcb

(
−2∆ad

ecWde
e
)
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−
(
−2∆cd

ebWde
e
)
αac (213)

D(x,α)β
a
b = −

(
δaeδ

d
b − ηadηeb

)
(dxWde

e +Wddee)

+αcb
(
δaeδ

d
c − ηadηec

)
Wde

e

+
(
δceδ

d
b − ηcdηeb

)
Wde

eαac (214)
= −δaeδdbdxWde

e + ηadηebdxWde
e − δaeδdbWddee

+ηadηebWddee + αcbδ
a
eδ

d
cWde

e − αcbηadηecWde
e

+δceδ
d
bWde

eαac − ηcdηebWde
eαac (215)

= ηadηebdxWde
e − dxWbe

a

−Wbdea + ηadηebWddee

+αdbWde
a + ηbcα

c
eη
adWde

e

+Wbe
cαac + ηebWde

eηcaαdc
= ηadηeb (dxWd −Wcα

c
d) ee −

(
dxWb −Wd α

d
b

)
ea

−Wb (dea − ecαac ) + ηadηebWd

(
dee − ef αef

)
(216)

= ηadηeb (dxWd −Wcα
c
d) ee − δaeδdb (dxWd −Wcα

c
d) ee

= −2∆ad
cb

(
D(x,α)Wd

)
ec (217)

where we have used:

dea = ecαac (218)
βab = βabce

c = −2∆ad
cbWde

c (219)
D(x,α)Wd = dxWd −Wcα

c
d (220)

= −dxe
β

d yβ + e β
c yβα

c
d (221)

We also will need

βcbβ
a
c = 4∆cf

ebWf∆
ag
dcWge

eed

=
(
δceδ

f
b − η

cfηeb

)
Wf (δadδ

g
c − ηagηdc)Wge

eed

=
(
δgeδ

f
b δ

a
d − ηgfηebδad − δ

f
b η

agηde + δfdηebη
ag
)
WfWge

eed

=
(
Wde

d
)

(Wbe
a − ηebηagWge

e)−
(
ηfgWfWg

)
ηebe

eea

= 2
(
Wde

d
)

∆ac
ebWce

e −
(
ηfgWfWg

)
ηebe

eea

= 2
(
Wde

d
)

∆ac
ebWce

e − 1

2

(
ηfgWfWg

)
2∆ac

ebηcde
dee
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= 2∆ac
eb

((
Wde

d
)
Wc −

1

2

(
ηfgWfWg

)
ηcde

d

)
ee (222)

where we have used

2∆ac
ebηcde

dee = (δaeδ
c
b − ηacηeb) ηcdedee

= ηbde
dea + ηbde

dea

= 2ηbde
dea (223)

Now,

1

2
Ωa
bcde

ced = Ra
b +

[
−2∆ac

dbfce
d + d(y)β

a
b

]
+
[
−2∆ac

dbbcee
eed + D(x,α)β

a
b − βcbβac

]
(224)

First, the mixed terms of the curvature equation must cancel:[
−2∆ac

dbfce
d + d(y)β

a
b

]
= −2∆ac

dbe
β

c dyβe
d + d(y)

(
2∆ac

dbe
β

c yβe
d
)

= 2∆ac
db

(
−e β

c dyβe
d + e β

c dyβe
d
)

(225)
= 0 (226)

This is satisfied identically, so the curvature equation is purely spacetime.
The final bracket is given by

[−]2 = −2∆ac
dbbce

d − 2∆ac
db

(
D(x,α)Wc

)
ed

−2∆ac
db

(
(Wee

e)Wc −
1

2

(
ηfgWfWg

)
ηcee

e

)
ed

= −2∆ac
dbbce

d

−2∆ac
db

(
D(x,α)Wc + (Wee

e)Wc −
1

2

(
ηfgWfWg

)
ηcee

e

)
ed(227)

Without loss of generality, we define a new 1-form ca as

ca = ba + D(x,α)Wa + (Wee
e)Wa −

1

2

(
ηfgWfWg

)
ηaee

e (228)

or equivalently,

ba = ca −D(x,α)Wa − (Wee
e)Wa +

1

2

(
ηfgWfWg

)
ηaee

e (229)
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Then the full curvature structure equation becomes

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

dbcce
d

Ωa
bcd = Ra

bcd − 2 (∆ae
dbcec −∆ae

cb ced) (230)

The field equation is
Ωa
bac = 0 = Ωa

cab (231)

which is sufficient to determine ca. We have

Ωc
bcd = Rbd + (n− 2) cbd + ηbdc

c
c = 0 (232)

or
− (n− 2) cbd − ηbdccc = Rbd (233)

Inverting,
2 (n− 1) c = −R (234)

so

cab = − 1

(n− 2)

(
Rab −

1

2 (n− 1)
Rηab

)
(235)

≡ Rab (236)

Using this form, we can find the full curvature:

Ωa
bcd = Ra

bcd − 2 (∆ae
dbcec −∆ae

cb ced) (237)

= Ra
bcd −

1

(n− 2)
(δadRbc − ηdbRa

c − δacRbd + ηcbR
a

d) (238)

− R

(n− 1) (n− 2)
(δac ηbd − δadηbcηed) (239)

= Ca
bcd (240)

The curvature is fully spacelike and equal to the Weyl curvature tensor. We
may also write

Ca
bcd = Ra

bcd − 2 (∆ae
dbRec −∆ae

cbRed) (241)
Ca
b = Ra

b − 2∆ae
dbRee

d (242)

in agreement with the previous result.
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The co-torsion We must still satisfy the following equations:

α∆cf
eb

(
Ω b
gc − δbgΩ a

ac

)
= 0 (243)

− (n− 2) Ω a
ae = ηeaη

bcΩ a
bc (244)

where

Ω[abc] = 0 (245)
Ω b

[ac] = 0 (246)

Ω bc
a = 0 (247)

In addition we have the structure equation for the co-torsion, eq.(124):

1

2
Ωabce

bec + Ω b
acωbe

c = dωa − ωbaωb − ωaω0
0 (248)

It is convenient to first derive some relations.

Some useful relations Working in the orthonormal basis, we will need
certain exterior derivatives.

dfa = de β
a dyβ

=
(
αβa−Γβ

a

)
dyβ

and
dfa − αcafc + Γc

afc = 0

where

fa = e β
a (x) dyβ (249)

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec (250)

We also need

dya = de µ
a yµ + e µ

a dyµ

=
(
−e ν

a Γµ
ν + e µ

b αba
)
yµ + e µ

a dyµ

= e µ
a

(
dyµ − yαΓα

µ + ybα
b
µ

)
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which follows from the vanishing covariant derivative of the solder form and
its inverse,

dea − ebαab = 0

∂βe
a

α + e b
α αabβ − e a

µ Γµαβ = 0

∂βe
α

c − e α
b αbcβ + e µ

c Γαµβ = 0

de β
a + e ν

a Γβ
ν − e

β
b αba = 0

Check:

dfa = d
(
e β
a dyβ

)
= de β

a dyβ

=
(
e β
b αba − e µ

a Γβ
µ

)
dyβ

=
(
αβa − Γβ

a

)
dyβ

= (αca − Γc
a) fc

or
dfa − αcafc + Γc

afc = 0

and

dya = de µ
a yµ + e µ

a dyµ

=
(
−e ν

a Γµ
ν + e µ

b αba
)
yµ + e µ

a dyµ

= e µ
a

(
dyµ − ybΓb

µ + ybα
b
µ

)
= e µ

a

(
dyµ − yαΓα

µ + ybα
b
µ

)
= fa − e µ

a yαΓ
α
µ + ybα

b
a

Now we compute the co-torsion.

Vanishing cross torsion To begin, we compute the terms on the right
side:

1

a
Ωa = dfa + dba − ωba (fb+bb)− (fa+ba)ω

0
0

= αcafc − Γc
afc − αbafb + 2∆bc

daWce
dfb − faω

0
0

+dba − αbabb + 2∆bc
daWce

dbb − baω
0
0

= −Γc
afc +Wae

bfb − ηbcηdaWce
dfb − faWce

c

+dba − αbabb + 2∆bc
daWce

dbb − baω
0
0
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Now look at

dba = d

(
Ra − e ν

a yµΓ
µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec
)

= dRa − de ν
a yµΓ

µ
ν − e ν

a dyµΓ
µ
ν − e ν

a yµdΓµ
ν

−dyayce
c − yadyαdxα + ηac

(
ηghygdyh

)
ec

+
1

2
ηac
(
ηghygyh

)
dec

Combining,

1

a
Ωa = −Γc

afc +Wae
bfb − ηbcηdaWce

dfb − faWce
c

−e ν
a dyµΓ

µ
ν − fayce

c − yadyαdxα + ηacη
ghygfhe

c

+dRa − de ν
a yµΓ

µ
ν − e ν

a yµdΓµ
ν

+e µ
a yαΓ

α
µyce

c − ybαbaycec

−ηacηghyge µ
h yαΓ

α
µe

c + ηacη
ghygybα

b
he

c

+
1

2
ηac
(
ηghygyh

)
dec − αbabb + 2∆bc

daWce
dbb − baω

0
0

Look at the fc terms only:

1

a
Ω b
acfbe

c = −Γc
afc − fcΓ

c
a +Wae

bfb − ηbcηdaWce
dfb − faWce

c

−fayce
c − yafcec + ηacη

ghygfhe
c

= 0

This requires
Ω b
ac = 0

and all field equations are satisfied. Only the spacetime Bianchi, Ω[abc] = 0,
remains.

Spacetime co-torsion The remaining terms are:

1

2a
Ωabce

bec = dRa − de ν
a yµΓ

µ
ν − e ν

a yµdΓµ
ν

+e µ
a yαΓ

α
µyce

c − ybαbaycec

−ηacηghyge µ
h yαΓ

α
µe

c + ηacη
ghygybα

b
he

c

31



+
1

2
ηac
(
ηghygyh

)
dec − αbabb

+2∆bc
daWce

dbb − baω
0
0

= dRa − e ν
b yµα

b
aΓ

µ
ν − e ν

a yµdΓµ
ν + e β

a yµΓ
ν
βΓ

µ
ν

+e µ
a yαΓ

α
µyce

c − ybαbaycec

−ηacηghyge µ
h yαΓ

α
µe

c + ηacη
ghygybα

b
he

c

+
1

2
ηac
(
ηghygyh

)
ebαcb

−αbaRb + αbae
ν

b yµΓ
µ
ν + αbaybyce

c

−αba
1

2
ηbc
(
ηghygyh

)
ec

+2∆bc
daWce

dRb − 2∆bc
daWce

de ν
b yµΓ

µ
ν

−2∆bc
daWce

dybyee
e + 2∆bc

daWce
d1

2
ηbe
(
ηghygyh

)
ee

+Raybe
b − e ν

a yµΓ
µ
νybe

b

−yaycecybeb +
1

2
ηac
(
ηghygyh

)
ecybe

b

Collecting terms,
1

2a
Ωabce

bec = dRa − αbaRb − ηbcηdaWce
dRb −RaWbe

b

−e β
a yµ

(
dΓµ

β − Γν
βΓ

µ
ν

)
+

1

2

(
ηghygyh

) (
ηdae

dyce
c + ηace

cybe
b − 2ηdae

dyee
e
)

+ybycα
b
ae

c − ybycαbaec

−ηacηbhygybαghe
c + yayee

bΓe
b

−ηadηbcycyeedΓe
b + ηadη

bcycyee
dΓe

b

The third, fourth and sixth lines each vanish identically while

ηacη
bhygybα

g
he

c = 0

by the antisymmetry of the spin connection, and

yayee
bΓe

b = 0

by the symmetry of the Christoffel conneciton. With these simplifications,
1

2a
Ωabce

bec = dRa − αbaRb − ηbcηdaWce
dRb −RaWbe

b
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−e β
a yµ

(
dΓµ

β − Γν
βΓ

µ
ν

)
= dRa − αbaRb +Wb

(
Rb
a − 2∆bc

daRce
d
)

= D(x,α)Ra +WbC
b
a

The final Bianchi is identically satisfied:

0 =
1

2a
Ωabce

aebec

= eaD(x,α)Ra + eaWbC
b
a

= D(x,α) (eaRa) +WbC
b
ae

a

= 0

5 Summary
The connection takes the final form

ωab = αab − 2∆ac
dbWce

d (251)
ωa = ea(x) (252)
ωa = a (fa+ba) (253)
ω0

0 = Wce
c = −yβdxβ (254)

where

a = (1− κ)−1 (255)

κ = − 1

(n− 1)

(
1 +

γn2

(α (n− 1)− β)

)
(256)

fa = e β
a (x) dyβ (257)

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec (258)

Notice that the strange looking Γµ
ν term in ba may be written α-covariantly

as

Dνyµ =
∂

∂xν
yµ − yαΓαµν = −yαΓαµν

Dyµ = dx yµ − yαΓα
µ = −yαΓα

µ

with the understanding that the µ index of Dyµ labels n different func-
tions, but does not transform as a vector. Is there a sense in which yµ does
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transform as a vector? Recall that the submanifolds spanned by yµ are flat
Riemannian geometries. If we assume the corresponding manifolds are Rn,
then the coordinate doubles as a vector. Then this term is fully covariant.

We also have

Rab ≡ −
1

(n− 2)

(
Rab −

1

2 (n− 1)
Rηab

)
(259)

The curvatures are then

Ωa
b =

1

2
Ωa
bcde

ced − 2κ∆ac
dbωce

d (260)

= Ra
b − 2∆ac

dbRce
d − 2aκ∆ac

dbfce
d (261)

= Ca
b − 2aκ∆ac

dbfce
d (262)

Ωa = 0 (263)
Ωa = D(x,α)Ra +WbC

b
a (264)

= dRa − αbaRb +WbC
b
a (265)

Ω0
0 = −κeaωa = −aκeafa = −aκdxβdyβ (266)

Finally, the structure equations take the form

dωab = ωcbω
a
c + 2∆ad

cbωde
c + Ca

b (267)
dea = ebωab + ω0

0e
a (268)

dωa = ωbaωb + ωaω
0
0 + D(x,α)Ra +WbC

b
a (269)

dω0
0 = eaωa (270)

where
Ca
b = Ra

b − 2∆ac
dbRce

d

is the Weyl curvature.

6 Existence and Ricci flatness of spacetime
We now return to our second assumption: the minimial condition necessary
to guarantee the existence of a spacetime submanifold. This is provided by

34



a second involution, this time of the co-solder form, ωb. Setting ωb = 0 we
have

0 =
1

a
ωa

= e β
a (x) dyβ +Ra − e ν

a yµΓ
µ
ν

−yaycec +
1

2
ηac
(
ηghygyh

)
ec (271)

together with the reduced structure equations

dωab = ωcbω
a
c +

1

2
Ca
bcde

ced

dea = ebωab + ω0
0e

a = ebαab
0 = D(x,α)Ra +WbC

b
a

dω0
0 = 0 (272)

To examine the consequences of these equations, we first examine eq.(271).
Eq.(271) has become a differential equation for a hypersurface, ya = ya (x) .
We first rewrite the derivative term as

e β
a (x) dyβ = dya − yβde β

a

= dya − yβe β
b αba + yβe

ν
a Γβ

ν

where αab is the spin connection compatible with the solder form ea(x). Re-
arranging, we have

dya = ybα
b
a + yayce

c − 1

2
ηac
(
ηghygyh

)
ec −Ra (273)

Because ya is the negative of the Weyl vector, eq.(273) is closely related to the
change in the Ricci and Eisenhart tensors under a conformal transformation
([?]),

R̃ab = Rab − ηab�φ− (n− 2) [φ;ab − φ;aφ;b + ηabφ
;cφ;c]

♥Ra = Ra + dφ;a − φ;bα
b
a − φ;aφ;ce

c +
1

2
ηac
(
ηghφ;gφ;h

)
ec

where φ;a = Daφ = ∂aφ and n is the dimension. Specifically, notice that if
we could replace ya with φ;a in eq.(273) we would have exactly the condition
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♥Ra = 0, equivalent to the vacuum Einstein equation in the conformally
transformed basis. Therefore, eq(273), together with

yαdx
α = yce

c = dφ (274)

guarantee the existence of a conformal gauge in which the vacuum Einstein
equation holds.

We now show that the reduced structure equations, eqs.(272) provide the
integrability conditions for eqs.(273) and (274). The integrability conditions
are given by the Poincarè lemma, d2 = 0. Applying this first to eq.(273), we
have

0 = d2ya

= dybα
b
a + ybdα

b
a + dyayce

c + yad (yce
c)

−ηacηghygdyhec −
1

2
ηac
(
ηghygyh

)
dec − dRa

Substituting for all occurrences of dyb we find after some cancellations,

0 = ybR
b
a −DRa −Rayce

c −
(
ηbcybRc

)
ηade

d + yad (yce
c)

Now, we substitute for the curvature 2-form,

Ra
b = Ca

b + 2∆ac
dbRce

d

This reduces the integrability condition to

0 = ybC
b
a −DRa + yad (yce

c)

Turning now to the integrability condition for eq.(274), we have

0 = d2φ

= d (yce
c)

Combining these two conditions as the pair

ybC
b
a −DRa = 0

d (yce
c) = 0

and recalling that Wa = −ya, we see that the reduced structure equations,
(272) provide exactly these conditions. Therefore, there exists a choice of
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the conformal gauge such that the Einstein equation holds on the ωa = 0
submanifold. This same choice reduces the Weyl vector to zero and the
remaining structure equations to

dαab = αcbα
a
c +

1

2
Ca
bcde

ced

dea = ebαab

the first of which again shows that the Ricci tensor must vanish. In this gauge,
the spacetime is a Ricci flat, purely Riemannian spacetime. Therefore, the
reduced structure equations have as solutions the class of metrics conformally
equivalent to the set of solutions to the vacuum Einstein equation.

We close this section with one further observation: the second condition,
giving the integrability of ya, is unnecessary. If we contract the solder form
with dya we have

(dya) ea = d (yae
a)− yadea

= d (yae
a)− yaebαab

Substituting this into eq.(273) we find

d (yae
a)− yaebαab =

(
ybα

b
a + yayce

c − 1

2
ηac
(
ηghygyh

)
ec −Ra

)
ea

= ybα
b
ae

a −Rae
a

and therefore
d (yae

a) = 0

by the symmetry of the Eisenhart tensor.
The meaning of this additional result is clearest if we begin with the

expression for the change in the Eisenhart tensor under a conformal trans-
formation,

♥Ra = Ra + dφ;a − φ;bα
b
a − φ;aφ;ce

c +
1

2
ηac
(
ηghφ;gφ;h

)
ec

Treating φa = φ;a as a vector, we see that

φbC
b
a −DRa = 0 (275)

is the integrability condition for the existence of a vector field φa such that
♥Ra = 0. Then, contracting with the solder form as above, we see that
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d (φae
a) = 0 so that φa must be a gradient. Eq.(??) alone is therefore a suffi-

cient condition for the existence of a conformal transformation to a Ricci flat
spacetime. Szekeres [?] uses the spinor representation to show that eq.(??)
may be written as a constraint on the curvatures which is independent of
ya. It therefore follows from the results of [?] that eq.(??) is also necessary.
Incidently, our result shows the equivalence of certain well-known conditions:
the C-spaces

(
φ;bC

b
a −DRa = 0

)
of Szekeres [?] , the J-spaces (DRa = 0)

of Thompson ([?]), and conformally Ricci flat spaces. This follows because
Ricci-flatness implies the J- and C-conditions, while we have shown that the
C-condition implies conformal Ricci flatness.

These results were published in [BCYMG].

7 Limiting cases
We briefly consider two limiting cases of this solution – vanishing curvatures
and vanishing co-torsion.

7.1 Flat limit

The solution for vanishing curvature was first presented in [WHEELER
JMP]. Since the curvatures are

Ωa
b = Ra

b − 2κ∆ac
dbωce

d (276)
= Ca

b + 2aκ∆ac
dbfce

d (277)
Ωa = 0 (278)
Ωa = D(x,α)Ra + Cb

aWb (279)
Ω0

0 = κωaω
a = −aκdxαdyα (280)

we set them to zero to find:

0 = Ca
b + 2aκ∆ac

dbfce
d (281)

= Ra
b + 2κ∆ac

dbωce
d (282)

0 = Ωa (283)
0 = D(x,α)Ra − ybCb

a (284)
0 = κωaω

a = −aκdxαdyα (285)
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Because of the independence of the ys, these require vanishing conformal
curvature and vanishing D(x,α)Ra. The final equation also implies vanishing
aκ. Since

aκ =
κ

1− κ
(286)

we see that aκ = 0 implies κ = 0. Therefore, with

κ = − 1

(n− 1)

(
1 +

γn2

α (n− 1)− β

)
(287)

we find the constraint

0 = γn2 − β + α (n− 1) (288)

on the initial action. In this case,

Λa
b ≡ (α(n− 1)− β + γn2)δab = 0 (289)

as required by the field equations.
Finally, the connection may be written as:

ωab = 2∆ac
dbyce

d (290)
ωa = ea = dxa (291)

ωa = dya −
(
yayb −

1

2
ηaby

2

)
eb (292)

ω0
0 = Wce

c = −yβdxβ (293)

This agrees with the flat solution [WHEELER JMP].
We now explore two weaker conditions.

7.2 Torsion and Dilatation free solution

A weaker constraint is to set the dilatational curvature to zero as well as the
torsion. In this case, we have the general torsion-free solution together with
the condition

Ω0
0 = −aκdxβdyβ = 0 (294)

This can only be accomplished by setting

aκ =
κ

1− κ
= 0
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and hence κ = 0 and a = 1. From the definition of κ, this condition holds if
only if

0 = α (n− 1)− β + γn2 (295)

implying a special subclass of linear Lagrange densities.
The connection then takes the final form

ωab = αab − 2∆ac
dbWce

d

ωa = ea(x)

ωa = fa+ba

ω0
0 = Wce

c = −yβdxβ

and the curvatures reduce to

Ωa
b = Ca

b (296)
Ωa = 0 (297)
Ωa = D(x,α)Ra +WbC

b
a (298)

Ω0
0 = 0 (299)

7.3 Co-torsion free solution

Now consider the limit of vanishing co-torsion. From the curvatures,

Ωa
b = Ca

b + 2aκ∆ac
dbfce

d (300)
= Ra

b + 2κ∆ac
dbωce

d (301)
Ωa = 0 (302)
Ωa = D(x,α)Ra +WbC

b
a (303)

Ω0
0 = κωaω

a = −aκdxαdyα (304)

we set
0 = Ωa = D(x,α)Ra − ybCb

a (305)

and since there is no y-dependence in the first term, we require Cb
a = 0 and

D(x,α)Ra = 0 seperately. The remaining curvatures then reduce to

Ωa
b = 2aκ∆ac

dbfce
d (306)

Ω0
0 = −aκdxαdyα (307)
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The spacetime is conformally flat, so we can perform an x-dependent rescaling
to flat space. Then the Weyl vector becomes

ω0
0 = Wβdx

β = (−yβ + ∂βϕ) dxβ (308)

and we can choose Cartesian coordinates, ea = dxa.
The connection is then

ωab = −2∆ad
cb (−yb + ∂bϕ) ec (309)

ωa = ea = dxa (310)

ωa = a

(
dya − yayedxe +

1

2
y2ηaedx

e

)
(311)

ω0
0 = Wce

c = Wβdx
β

= (−yb + ∂bϕ) dxb (312)

again agreeing with the previous solution.

8 Special Case
Now consider the special case when 2β − (n− 2)α = 0. In this case we find
that the spacetime dilatational curvature, Ω0

0bc, is now undetermined.
To find the full solution, we return to the relevant curvature field equa-

tions,
αΩa

bac + βΩ0
0bc = 0

and Bianchi identity:

Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc

The symmetric and antisymmetric parts of the first combine with the Bianchi
identities to yield

Ωa
bac + Ωa

cab = 0 (313)
Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc (314)

and now give no constraint on the spacetime dilatation.
The cross term of the curvature and dilatation are related as before,

except that Λa
b and κ take the simpler forms

Λa
b ≡

n

2
(α + 2γn) δab

41



and
κ = − 1

(n− 1)

(
1 +

2γn

α

)
(315)

The remaining field equations and Bianchi identities are manipulated as be-
fore with the same results. Collecting results we have:

Curvature:

Ωacd
b = 0 (316)

Ωab
cd = −2κ∆ab

dc (317)
Ωa
bac + Ωa

cab = 0 (318)
Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc (319)

Torsion:
Ωa = 0 (320)

Dilatation:

Ω0cd
0 = 0 (321)

Ω0a
0b = κδab (322)

Co-torsion:

Ω ab
a = 0 (323)

α∆cf
eb

(
Ω b
gc − δbgΩ a

ac

)
= 0 (324)

β (Ω c
cb − Ω a

ba ) = 0 (325)
− (n− 2) Ω a

ae = ηebη
cfΩ b

fc (326)

where
κ = − α + 2nγ

(n− 1)α

8.1 Differential part of the solution

First, check the dilatation Bianchi. We need to know the momentum piece
of the co-torsion before studying the involution of the solder form. We still
have ωb = eb (x) so

dω0
0 = (1− κ) eaωa +

1

2
Ω0

0bce
bec (327)
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0 = (1− κ) eaΩa + d

(
1

2
Ω0

0bcω
bωc
)

(328)

= (1− κ) eaΩa +
1

2
∂αΩ0

0bce
α

a eaebec (329)

+
1

2
∂αΩ0

0bcdyαe
bec (330)

+
1

2
Ω0

0bcdebec − 1

2
Ω0

0bce
bdec (331)

= (1− κ) eaΩa +
1

2
∂αΩ0

0bce
α

a eaebec (332)

+
1

2
∂αΩ0

0bcdyαe
bec + Ω0

0bcdebec (333)

Since
dyα = Aαae

a +Bα
αωa

for some Aαa and Bα
α , and deb is bilinear in the solder form, the only term

with two co-solder forms is

1

2
(1− κ) eaΩ bc

a ωbωc = 0

which implies
(1− κ) Ω bc

a = 0

Unless κ = 1, the involution of the solder form goes through as for the generic
case, giving

ωab = ωabce
c (334)

ωa = ea (335)
= e a

α (x, y) dxα (336)
ωa = fa + babe

b (337)
= ∂αθa (x, y) dyα + baβ (x, y) dxβ (338)

ω0
0 = Wce

c = Wβdx
β (339)

Both e a
α and f α

a must be invertible.
Again the structure equation for the solder form restricts the functional

dependence of the solder form to x only, ea = ea (x).
We can simplify the form of the co-solder form as well. First, observe that

there is total freedom in the choice of the coordinate functions θa. Extracting
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an inverse solder form e µ
a (x) and a constant, a, from both θa and baβ,

ωa = ∂αθa (x, y) dyα + baβ (x, y) dxβ

= ae µ
a

(
∂αθµdyα + bµβ (x, y) dxβ

)
we rewrite the yα derivative of θµ as an exterior derivative on the full bicon-
formal space,

ωa = ae µ
a

(
∂αθµdyα + bµβ (x, y) dxβ

)
(340)

= ae µ
a

(
dθµ − ∂βθµdxβ + bµβdx

β
)

(341)
= ae µ

a

(
dθµ + (bµβ − ∂βθµ) dxβ

)
(342)

we see that coordinate freedom on the ea = 0 submanifold leads to a change
in bαβ. We use this freedom below to simplify the form of bαβ.

8.1.1 Back to the structure equations

In the following subsections, we work systematically through the structure
equations to arrive at a final form for the connection.

The solder form structure equation We begin with eq.(123) for the
solder form,

dea = ebωab + ω0
0e

a (343)

This is solved for the spin connection as before, leading to

ωab = αab − 2∆ac
dbWce

d (344)

The dilatation equation Next, consider eq.(125) for the dilatation,

dω0
0 = (1− κ)ωaωa +

1

2
Ω0

0bce
bec (345)

Expanding the right side,

dω0
0 = (1− κ)ωaωa +

1

2
Ω0

0bce
bec (346)

d
(
Wβdx

β
)

= (1− κ) (e a
α dxα) ae µ

a

(
dθµ + (bµβ − ∂βθµ) dxβ

)
+

1

2
Ω0

0µβdx
µdxβ(347)

= (1− κ) a
(
dxµdθµ + (bµβ − ∂βθµ) dxµdxβ

)
+

1

2
Ω0

0µβdx
µdxβ (348)
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Choosing a = (1− κ)−1 = const., setting

b̃αβ = bαβ − ∂βθα

and expanding the exterior derivative,

∂αWβdθαdx
β+∂αWβdx

αdxβ = dxβdθβ+b̃αβdx
αdxβ+

1

2
Ω0

0αβdx
αdxβ (349)

we equate the coefficients of like terms

∂αWβ − ∂βWα = b̃αβ − b̃βα + Ω0
0αβ (350)

∂αWβ = −δβα (351)

The second of these, eq.(351), may be integrated immediately to give

Wβ = −θβ + gβ(x) (352)

This form is independent of the choice for the θβ coordinates. Substituting
this solution into eq.(350),

∂αgβ − ∂βgα = bαβ − ∂βθα − bβα + ∂αθβ + Ω0
0αβ (353)

Rearranging, we have

bαβ − bβα + Ω0
0αβ = ∂β (θα − gα)− ∂α (θβ − gβ) (354)

The best we can do now with our choice of θα is make the right side vanish.
With this choice we have

bαβ − bβα + Ω0
0αβ = 0 (355)

The result is still accomplished by setting the coordinate on the ea = 0
submanifolds to be

yα = θα − gα
With this choice the Weyl vector still takes the simple form

Wβ = −yβ

The only difference is that bab now has an antisymmetric part.
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The curvature equation Now consider the curvature equation

1

2
Ωa
bcde

ced − 2κ∆ac
dbωce

d = dωab − ωcbωac −∆ad
cb ωde

c (356)

The first part of the calculation proceeds as for the generic case. Define the
curvature of αab (e (x)) in the usual way,

Ra
b = dαab − αcbαac (357)

In particular, Ra
b depends only on x. Expanding,

1

2
Ωa
bcde

ced − 2κ∆ac
dbωce

d = dαab − αcbαac − 2∆ac
dbωce

d

+dβab − αcbβac − βcbαac − βcbβac (358)
= Ra

b − 2∆ac
dbωce

d

+dβab − αcbβac − βcbαac − βcbβac (359)

or
1

2
Ωa
bcde

ced = Ra
b − 2 (1− κ) ∆ac

dbωce
d

+dβab − αcbβac − βcbαac − βcbβac

The exterior derivative is

dβab = d
(
−2∆ac

dbe
µ

c Wµe
d
)

= d
(
2∆ac

dbe
µ

c yµe
d
)

= 2∆ac
dbde

µ
c yµe

d + 2∆ac
dbe

µ
c dyµe

d + 2∆ac
dbe

µ
c yµded

Then since ωa = (1− κ)−1 (fa+ba) ,

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

db (e µ
c dyµ+bc) ed

+2∆ac
dbde

µ
c yµe

d + 2∆ac
dbe

µ
c dyµe

d

+2∆ac
dbe

µ
c yµded − αcb

(
−2∆ae

dce
µ

e Wµe
d
)

−
(
−2∆ce

dbe
µ

e Wµe
d
)
αac

−
(
−2∆ce

dbe
µ

e Wµe
d
) (
−2∆af

gc e
µ

f Wµe
g
)

(360)

The dyµ dependent terms,

0 = −2∆ac
dbe

µ
c dyµe

d + 2∆ac
dbe

µ
c dyµe

d (361)
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cancel identically. Expanding the remainder, and using the antisymmetry of
the spin connection, ηdcαcb = −ηbcαcd,

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

dbbce
d

+2∆ac
dbde

µ
c yµe

d + 2∆ac
dbe

µ
c yµded

−2αcb∆
ae
dce

µ
e yµe

d − 2∆ce
dbe

µ
e yµe

dαac
−4∆ce

dbe
µ

e yµe
d∆af

gc e
ν

f yνe
g

= Ra
b − (δadδ

c
b − ηacηdb) bce

d

+ (δadδ
c
b − ηacηdb) de µ

c yµe
d

+ (δadδ
c
b − ηacηdb) e µ

c yµded (362)
−αebe µ

e yµe
a − ηaeηbce µ

e yµα
c
de
d

−e µ
b yµe

cαac − ηcaηdbe µ
e yµe

dαec
−e µ

b yµe
de ν
d yνe

a + ηefηdbe
µ

e yµe
de ν
f yνe

a

−ηdbηafe µ
e yµe

de ν
f yνe

e (363)

Setting ya = e µ
a yµ, this becomes

1

2
Ωa
bcde

ced = Ra
b − (δadδ

c
b − ηacηdb) bce

d (364)

+ (δadδ
c
b − ηacηdb) (de µ

c − αece µ
e ) yµe

d (365)
+ (δadδ

c
b − ηacηdb) yc

(
ded − eeαde

)
(366)

− (δcbδ
a
d − ηdbηac) ycyeeeed (367)

+ (δcbδ
a
d − ηdbηca)

1

2
ηce
(
ηghygyh

)
eeed (368)

= Ra
b − 2∆ac

db

(
bce

d + (e ν
c yµΓ

µ
ν ) ed (369)

+ycyee
eed − 1

2
ηce
(
ηghygyh

)
eeed

)
(370)

where we use

de µ
c − αece µ

e + e ν
c Γµναdx

α = 0

Γµναdx
α = Γµ

ν

in the last step. Thus, Γµνα is the Christoffel connection corresponding to
solder form ea and spin connection αec. For simplicity, define

ca = cace
c = ba + e ν

a yµΓ
µ
ν + yayce

c − 1

2
ηac
(
ηghygyh

)
ec (371)
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Then we have simply

1

2
Ωa
bcde

ced = Ra
b − 2∆ac

dbcce
d (372)

or, in components,

Ωa
bcd = Ra

bcd − 2∆ae
dbcec + 2∆ae

cb ced (373)
= Ra

bcd − (δadδ
e
b − ηdbηae) cec + (δac δ

e
b − ηcbηae) ced (374)

= Ra
bcd − δadcbc + ηdbc

a
c + δac cbd − ηcbca d (375)

Ωa
bcd = Ra

bcd − δadcbc + ηdbc
a

c + δac cbd − ηcbca d (376)

where

ca = cace
c = ba + e ν

a yµΓ
µ
ν + yayce

c − 1

2
ηac
(
ηghygyh

)
ec (377)

Here the calculation starts to differ, because the field equation still con-
tains the dilatational curvature. It is convenient to find the symmetric and
antisymmetric parts of cab,

c(ab) = b(ab) + yµΓ
µ
ab + yayb −

1

2
ηab
(
ηghygyh

)
c[ab] = b[ab]

The field equation is

Ωa
bac + Ωa

cab = 0 (378)
Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc (379)

Inserting the expression for the trace of the curvature,

Ωc
bcd = Rc

bcd − cbd + ηdbc
c

c + ncbd − cbd (380)

we find

0 = Ωc
bcd + Ωc

dcb = 2Rc
bcd + 2ηdbc

c
c + (n− 2) (cbd + cdb)(381)

Ωa
bac − Ωa

cab = − (n− 2) Ω0
0bc = 2 (n− 2) b[bd] (382)

By eq.(??), the second equation is exactly satisfied, while the first gives the
Eisenhart tensor as before.
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c(bd) = − 1

n− 2

(
Rbd −

1

2 (n− 1)
ηbdR

)
≡ Rbd

c[ab] = −1

2
Ω0

0bc

With this, the full spacetime curvature 2-form is the Weyl (conformal) cur-
vature 2-form of the spacetime submanifold plus the spacetime dilatational
curvature,

Ωa
b = Ra

b − 2∆ac
dbRce

d − 2∆ac
db

(
−1

2
Ω0

0ce

)
eeed (383)

= Ca
b + ∆ac

dbΩ
0
0cee

eed (384)
1

2
Ωa
bcde

ced =
1

2
Ca
bcde

ced + ∆ac
dbΩ

0
0cee

eed (385)

We also have the form of ba,

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec − 1

2
Ω0

0ace
c (386)

The symmetry of the components, bab = bba is as before, but now the anti-
symmetric part gives the spacetime dilatation.

We have now solved for the entire connection:

ωab = αab − 2∆ac
dbWce

d (387)
ωa = ea(x) (388)
ωa = a (fa+ba) (389)
ω0

0 = Wce
c = −yβdxβ (390)

where

a = (1− κ)−1 (391)
fa = e β

a (x) dyβ (392)

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec − 1

2
Ω0

0ace
c (393)

= b0
a −

1

2
Ω0

0ace
c (394)

where b0
a denotes the generic form of ba. All that is left is to solve the co-

torsion field and structure equations.
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The co-torsion We must still satisfy the following equations:

α∆cf
eb

(
Ω b
gc − δbgΩ a

ac

)
= 0 (395)

− (n− 2) Ω a
ae = ηeaη

bcΩ a
bc (396)

where

Ω[abc] = 0 (397)
Ω b

[ac] = 0 (398)

Ω bc
a = 0 (399)

In addition we have the structure equation for the co-torsion, eq.(124):

1

2
Ωabce

bec + Ω b
acωbe

c = dωa − ωbaωb − ωaω0
0 (400)

Working in the orthonormal basis, we will need certain exterior deriva-
tives.

dfa = de β
a dyβ

=
(
αβa−Γβ

a

)
dyβ

and
dfa − αcafc + Γc

afc = 0

where

fa = e β
a (x) dyβ

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec − 1

2
Ω0

0ace
c

= b0
a −

1

2
Ω0

0ace
c

Using these relations, we compute the terms on the right side:

1

a
Ωa = dfa + dba − ωba (fb+bb)− (fa+ba)ω

0
0

= αcafc − Γc
afc − αbafb + 2∆bc

daWce
dfb − faω

0
0

+dba − αbabb + 2∆bc
daWce

dbb − baω
0
0
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= −Γc
afc +Wae

bfb − ηbcηdaWce
dfb − faWce

c

+d

(
b0
a −

1

2
Ω0

0ace
c

)
− αba

(
b0
b −

1

2
Ω0

0bce
c

)
+2∆bc

daWce
d

(
b0
b −

1

2
Ω0

0bce
c

)
−
(

b0
a −

1

2
Ω0

0ace
c

)
ω0

0

As for the generic case, when we expand db0
a the terms in fa cancel identically,

while the remaining b0
a terms give the generic result,

1

2a
Ωabce

bec +
1

a
Ω b
acωbe

c = dRa − de ν
a yµΓ

µ
ν − e ν

a yµdΓµ
ν − yaycdec +

1

2
ηac
(
ηghygyh

)
dec

−1

2
Ω0 ,µ

0ac dyµe
c − 1

2
dxΩ

0
0ace

c − αba
(

b0
b −

1

2
Ω0

0bce
c

)
+2∆bc

daWce
d

(
b0
b −

1

2
Ω0

0bce
c

)
−
(

b0
a −

1

2
Ω0

0ace
c

)
ω0

0

We therefore have
1

2
Ωabce

bec + Ω b
acωbe

c = dωa − ωbaωb − ωaω0
0

so that
1

2a
Ωabce

bec +
1

a
Ω b
acb

0
be
c = dRa − αbaRb − ηbcηdaWce

dRb −RaWbe
b

−e β
a yµ

(
dΓµ

β − Γν
βΓ

µ
ν

)
= dRa − αbaRb +Wb

(
Rb
a − 2∆bc

daRce
d
)

= D(x,α)Ra +WbC
b
a −D(x,α,W )Ω

0
0a

1

a
Ω b
acfbe

c = −1

2
Ω0 ,µ

0ac e b
µ fbe

c

where
1

2
Ω0

0ace
c = Ω0

0a

and

DΩ0
0a = dΩ0

0a − ωbaΩ0
0b −Ω0

0aω
0
0

= dΩ0
0a − ωbaΩ0

0b −Ω0
0aω

0
0

= dΩ0
0a −

(
αba −

(
δbdWa + δbaWd − ηadW b

)
ed
)
Ω0

0b

= D(x,α,W )Ω
0
0a
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Imposing the field equation for the cross term,

0 = Ω b
ac − Ω b

ca

= −a
2

Ω0 ,µ
0ac e b

µ +
a

2
Ω0 ,µ

0ca e b
µ

= aΩ0 ,µ
0ca e b

µ

so that
Ω0

0ca = Ω0
0ca (x)

and
Ω b
ac = 0

Therefore,

1

2a
Ωabce

bec = D(x,α)Ra +WbC
b
a −Dx,α,W

(
1

2
Ω0

0ace
c

)

9 Summary
The connection takes the final form

ωab = αab − 2∆ac
dbWce

d (401)
ωa = ea(x) (402)
ωa = a (fa+ba) (403)
ω0

0 = Wce
c = −yβdxβ (404)

where

a = (1− κ)−1 (405)
fa = e β

a (x) dyβ (406)

ba = Ra − e ν
a yµΓ

µ
ν − yaycec +

1

2
ηac
(
ηghygyh

)
ec − 1

2
Ω0

0ace
c (407)

= b0
a −

1

2
Ω0

0ace
c (408)

The curvatures are
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Ωa
b =

1

2
Ωa
bcde

ced − 2κ∆ac
dbωce

d (409)

= Ra
b − 2∆ac

dbRce
d − 2aκ∆ac

dbfce
d (410)

= Ca
b − 2aκ∆ac

dbfce
d (411)

Ωa = 0 (412)

Ωa = D(x,α)Ra +WbC
b
a −Dx,α,W

(
1

2
Ω0

0ace
c

)
(413)

Ω0
0 = −κeaωa = −aκeafa = −aκdxβdyβ (414)

10 Final special sub-case (in progress)
There is one final subcase which occurs when

κ = 1
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