
1 Tensors
In order to describe more than particle motion in spacetime, we need to define objects more complicated than
vectors, analogous to matrices and their generalizations. In order to construct meaningful physical quantities
– invariants – we need to keep track of how these objects transform under Lorentz transformations. This
leads us to define Lorentz tensors as those objects which transform linearly and homogeneously under Lorentz
transformations. It is possible to define tensors for other groups of transformations as well. We will write our
definition in a way that actually applies to the group of general coordinate transformations (or, in another
guise, diffeomorphisms).

Our definition parallels our definition of a 4-vector as any set of four quantities transforming as

A′α =

3∑
β=0

Mα
βA

β

where

x′α =

3∑
β=0

Mα
βx

β

is a Lorentz transformation. Notice that the Jacobian matrix of partial derivatives,

∂x′α

∂xµ
=

∂

∂xµ

3∑
β=0

Mα
βx

β

=

3∑
β=0

Mα
β

∂

∂xµ
xβ

=

3∑
β=0

Mα
βδ
β
µ

= Mα
µ

To generalize to arbitrary coordinate transformations instead of just the constant Lorentz transformations,
we simply replace Mα

µ by the matrix ∂x′α

∂xµ , where x′α = x′α
(
xβ
)
may be any coordinate transformation.

The transformation of a vector then becomes

A′α =

3∑
β=0

∂x′α

∂xβ
Aβ

Now suppose we have a vector equation of the form

V α =

3∑
β=0

Tα βS
β

for two vectors and a matrix. We say such an equation is covariant if it has the same form in any other
coordinates. In order for this to be the case we require

V ′α =

3∑
µ=0

T
′α
µS

′µ

3∑
β=0

∂x′α

∂xβ
V β =

3∑
µ=0

T
′α
µ

3∑
ν=0

∂x′µ

∂xν
Sν
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3∑
β=0

∂x′α

∂xβ

(
3∑
ρ=0

T β ρS
ρ

)
=

3∑
µ=0

3∑
ν=0

T
′α
µ

∂x′µ

∂xν
Sν

3∑
β=0

∂x′α

∂xβ

(
3∑

ν=0

T β νS
ν

)
=

3∑
µ=0

3∑
ν=0

T
′α
µ

∂x′µ

∂xν
Sν

3∑
ν=0

 3∑
β=0

∂x′α

∂xβ
T β ν −

3∑
µ=0

T
′α
µ

∂x′µ

∂xν

Sν = 0

If this equation holds for all vectors Sν , then the matrix in parentheses must vanish,

3∑
β=0

∂x′α

∂xβ
T β ν −

3∑
µ=0

T
′α
µ

∂x′µ

∂xν
= 0

Using the inverse transformation,

3∑
µ=0

∂x′α

∂xµ
∂xµ

∂x′β
=

∂x′α

∂x′β

= δαβ

we have

0 =

 3∑
β=0

∂x′α

∂xβ
T β ν −

3∑
µ=0

T
′α
µ

∂x′µ

∂xν

 ∂xν

∂xσ

=

3∑
ν=0

3∑
β=0

∂x′α

∂xβ
T β ν

∂xν

∂xσ
−

3∑
µ=0

T
′α
µ

3∑
ν=0

∂x′µ

∂xν
∂xν

∂xσ

=

3∑
ν=0

3∑
β=0

∂x′α

∂xβ
T β ν

∂xν

∂xσ
−

3∑
µ=0

T
′α
µδ
µ
σ

=

3∑
ν=0

3∑
β=0

∂x′α

∂xβ
T β ν

∂xν

∂xσ
− T

′α
σ

and we have the transformation law for the matrix,

T
′α
σ =

3∑
ν=0

3∑
β=0

∂x′α

∂xβ
T β ν

∂xν

∂xσ

Several things become evident from this calculation. First, we do not want to be writing all those
summation symbols! Looking closely, we see that there are two types of index, raised and lowered. In every
case where we have a sum, we have exactly two identical indices, and one is raised and one is lowered. From
here on, we employ the Einstein summation convention, and omit the explicit

∑
symbol. Instead we sum

automatically whenever we find a pair of matching indices with one raised and one lowered. The indices in
such a summed pair are called dummy indices, because they can be changed at will. Other indices, which
occur singly in each term, must always match in name and position with a corresponding index in each term.
These are called free indices, and they tell us what type of object we have. For example, in the expression
above, α and σ are free indices. They each occur once on each side of the equation, and α is raised and σ
lowered. Using the summation convention, we rewrite:

T
′α
σ =

∂x′α

∂xβ
T β ν

∂xν

∂xσ
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and because β and ν are dummy indices, this means the same thing as

T
′α
σ =

∂x′α

∂xµ
Tµ λ

∂xλ

∂xσ

=
∂x′α

∂xµ
∂xλ

∂xσ
Tµ λ

Notice a second property of this transformation. Tµ λ has one index of each type, and they transform
differently. The raised index transforms just like a contravariant vector, with the Jacobian matrix ∂x′α

∂xµ .
However, the lowered index transforms with the inverse matrix, ∂xα

∂x′µ . Raised indices are called contravariant
and lowered indices are called covariant.

Suppose we have a covariant vector and a contravariant vector,

Aα, B
β

We define the inner product or scalar product to be the sum

AαB
α = BαAα

and this quantity is invariant,

A′
αB

′α =

(
∂xµ

∂xα
Aµ

)(
∂x′α

∂xν
Bν
)

=

(
∂xµ

∂xα
∂x′α

∂xν

)
AµB

ν

= δµνAµB
ν

= AµB
µ

As we have seen, Lorentz transformations preserve the quadratic form

ds2 =
(
dx0
)2 − (dx1)2 − (dx2)2 − (dx3)2

We can write this as a double sum
ds2 = gαβdx

αdxβ

where

gαβ = ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Notice that there is a sign ambiguity here. We could equally well use the opposite sign of ds2 to define the
metric, in which case we would have

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This is actually the more common practice (see, e.g., Misner, Thorne & Wheeler, or Weinberg), but here
we will stay with Jackson’s convention. We will use the symbol gαβ to refer to a general metric which may
have functions as entries, and reserve the symbol ηαβ for this particular, constant, orthonormal matrix. For
example, if we write the line element ds2 in spherical coordinates,

ds2 =
(
dx0
)2 − (dr2 + r2dθ2 + r2 sin2 θdϕ2

)
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then

gαβ =


1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


Since gαβ has two covariant indices, we say it is type

(
0
2

)
. We define the inverse to gαβ with the

symbol gαβ so that
gαβgβµ = δαµ

For the orthonormal metric ηαβ we see that

ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


while for in spherical coordinates we write

gαβ =


1 0 0 0
0 −1 0 0
0 0 − 1

r2 0
0 0 0 − 1

r2 sin2 θ


Now look at the inner product of two vectors,

A0B0 −A ·B = A0B0 −A1B1 −A2B2 −A3B3

= ηαβA
αBβ

This inner product is the same as the covariant-contravariant sum if we define

Bα = ηαβB
β

for then we have

ηαβA
αBβ = AαBα

Because ηαβ is symmetric, we could equally well write

ηαβA
αBβ = ηβαA

αBβ

= AβB
β

= AαB
α

We say that contravariant vectors, Aα, are rank-1 tensors of type
(

1
0

)
while covariant vectors, Aα, are

rank one tensors of type
(

0
1

)
.

We can now define rank two tensors of types
(

2
0

)
,

(
1
1

)
and

(
0
2

)
as 4×4 matrices which tranform

as follows:
R̃αβ = Rµν ∂x̃

α

∂xµ
∂x̃β

∂xν type

(
2
0

)
S̃αβ = Sµν

∂x̃α

∂xµ
∂xν

∂x̃β type

(
1
1

)
T̃αβ = Tµν

∂xµ

∂x̃α
∂xν

∂x̃β type

(
0
2

)
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Every raised index transforms with a factor of ∂x̃α

∂xµ , while every lowered index transforms with the inverse
matrix, ∂x

µ

∂x̃α . This means that whenever we sum over one raised and one lowered index, the transformation
matrices cancel, leaving the sum invariant. For example, even though

JαT
αβ

has three indices, the two α-indices are dummy indices and the sum over them is invariant. Therefore, the

quantity transforms as a
(

1
0

)
tensor, and not a

(
2
1

)
tensor:

J̃αT̃
αβ =

∂x̃β

∂xµ
(JαT

αµ)

We could go on to describe higher rank tensors of type
(
p
q

)
with n = p+ q indices, but we will not need

them for electrodynamics.

A particularly important
(

0
1

)
tensor is the partial derivative operator, ∂α ≡ ∂

∂xα =
(
∂
∂x0 .

∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

)
=(

∂
∂x0 ,∇

)
. The chain rule shows that this is a covariant vector,

∂

∂x̃α
=
∂xβ

∂x̃α
∂

∂xβ

This also an operator; acting on a contravariant vector, the result is a
(

1
1

)
tensor,

T β
α =

∂Aβ

∂xα

= ∂αA
β

Setting α = β and summing gives an invariant, the divergence,

∂αA
α = ∂αAα

=
∂A0

∂x0
+∇ ·A

We can write the same operator in contravariant form,

∂α = ηαβ∂β
∂

∂xα
= ηαβ

∂

∂xβ

=

(
∂

∂x0
,−∇

)
and using the two we may form the Lorentz invariant operator,

� ≡ ∂α∂α

=

(
∂

∂x0
,−∇

)
·
(

∂

∂x0
,∇
)

=
∂2

∂x02
−∇2

This familiar wave operator is called the d’Alembertian.
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