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Scattering of light depends on the size of the scatterer relative to the wavelength of the light. For
wavelengths much smaller than the scattering object, geometric optics gives an adequate description. At
larger wavelengths, corrections to geometric optics may be found. At the other extreme, it is possible to
do a treatment in terms of lowest-order multipoles. Between these extremes, a full multipole treatment is
required.

1 Scattering at long wavelengths
We well be especially interested in the differential cross section. In the radiation zone, the time-averaged
radiated power per unit area is given by the Poynting vector, S = dP

dA r̂. Multiplying by r2 converts the area
element dA = r2dΩ into the solid angle dΩ, so the time-averaged radiated power per unit solid angle is

dP

dΩ
=

1

2

∣∣r2n · (E×H∗)
∣∣

For electric dipole or quadrupole fields in the radiation zone we found that H∗ =
√

ε0
µ0

(n×E∗), so this
becomes

dP

dΩ
=

1

2

∣∣∣∣r2n ·
(
E×

√
ε0

µ0
(n×E∗)

)∣∣∣∣
=

1

2

√
ε0

µ0
r2 |E|2

=
1

2Z0
r2 |E|2

It may be that we desire the cross-section for a particular polarization, in which case we consider only that
component of the electric field,

dP

dΩ
=

1

2Z0
r2 |ε∗ ·E|2

In scattering experiments, a target is struck by many incoming waves, so we express the outgoing power as
a probability for scattering in a given solid angle. To do this, we normalize by the incident power per unit
area. The result is the differential cross-section

dσ

dΩ
≡ 1

dPincident/dA

dPscattered
dΩ

=
1

2Z0
r2 |ε∗ ·Escattered|2

1
2Z0
|ε∗ ·Einc|2
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Because we divide by the incident power per unit area, the differential cross-section and the total cross-
section have units of area. The total cross-section, σ, may be thought of as the effective cross-sectional area
of the target.

Now, for long wavelength or small scatterers, we may assume an incoming polarized plane wave,

Esc = ε0E0e
ikn0·x

Hsc =
1

Z0
n0 ×Esc

which induces electric and magnetic dipole moments, p,m, in the scatterer. Then the scattered radiation is
the resulting dipole radiation,

Esc =
1

4πε0
k2 e

ikr

r

[
(n× p)× n− 1

c
n×m

]
Hsc =

1

Z0
n×Esc

Now, substituting into the differential cross section, we have

dσ

dΩ
(n, ε,n0, ε0) =

1
2Z0

r2 |ε∗ ·Escattered|2

1
2Z0
|ε∗0 ·Einc|

2

=
r2
∣∣∣ε∗ · 1

4πε0
k2 eikr

r

[
(n× p)× n− 1

cn×m
]∣∣∣2

E2
0

=
k4

(4πε0E0)
2

∣∣∣∣[ε∗ · (p− (n · p)n)− 1

c
ε∗ · (n×m)

]∣∣∣∣2
=

k4

(4πε0E0)
2

∣∣∣∣[ε∗ · p− (n · p) (ε∗ · n)− 1

c
m · (ε∗ × n)

]∣∣∣∣2
=

k4

(4πε0E0)
2

∣∣∣∣ε∗ · p +
1

c
m · (n× ε∗)

∣∣∣∣2
We have therefore reduced the scattering problem to finding the induced polarization and magnetization.
These induced properties generically involve the direction, n0, and polarization, ε0 of the incident light.
Notice that the differential cross section depends on k4. This dependence, called Rayleigh’s law, will be the
case unless both dipole moments vanish - quadrupole radiation will depend on k6, and so on.

2 Example 1: Scattering by a small dielectric sphere

2.1 The outgoing electric field
For a dielectric sphere much smaller than the wavelength, we may treat the electric field as momentarily
constant across the sphere.

Recall the solution for a dielectric sphere in a constant field. We start with a pair of series solutions for
the potential inside and out,

Φin =

∞∑
l=0

Alr
lPl (cos θ)

Φout = −E0r cos θ +

∞∑
l=0

Blr
−(l+1)Pl (cos θ)
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where the first term in Φout gives the constant field at “large” distances from the sphere. The remaining
terms incorporate the boundary conditions at the origin and infinity. Then, equating the tangential E and
normal D fields we equate like coefficients to find the solution

Φin = − 3ε0
ε+ 2ε0

E0r cos θ

Φout = −E0r cos θ +
ε− ε0
ε+ 2ε0

E0a
3

r2
cos θ

with the field outside being

Eout = −∇Φout

= −n̂ ∂

∂r
Φout − θ̂

1

r

∂

∂θ
(Φout)

= −n̂ ∂

∂r

(
−E0r cos θ +

ε− ε0
ε+ 2ε0

E0a
3

r2
cos θ

)
− θ̂ 1

r

∂

∂θ

(
−E0r cos θ +

ε− ε0
ε+ 2ε0

E0a
3

r2
cos θ

)
= E0k̂ +

2ε− 2ε0
ε+ 2ε0

E0a
3

r3
n̂ cos θ +

(
ε− ε0
ε+ 2ε0

E0a
3

r3

)
θ̂ sin θ

= E0k̂ +
ε− ε0
ε+ 2ε0

E0a
3

r3

(
2n̂ cos θ + θ̂ sin θ

)
= E0k̂ +

ε− ε0
ε+ 2ε0

E0a
3

r3

(
3n̂ cos θ −

(
n̂ cos θ − θ̂ sin θ

))
= E0k̂ +

ε− ε0
ε+ 2ε0

E0a
3

r3

(
3n̂ cos θ − k̂

)
where we used

θ̂ = n̂ sin θ − k̂ cos θ

k̂ = n̂ cos θ − θ̂ sin θ

Notice that the potential inside is just proportional to z = r cos θ, so the induced electric field inside is
parallel to the applied field, but changed in magnitude by 3ε0

ε+2ε0
.

We know that a dipole p = pk̂ at the origin produces an electric field

E =
3n̂ (n̂ · p)− p

4πε0r3

=
p

4πε0r3

(
3n̂ cos θ − k̂

)
Comparing this dipole field to the non-constant part of the exterior field,

ε− ε0
ε+ 2ε0

E0a
3

r3

(
3n̂ cos θ − k̂

)
=

p

4πε0r3

(
3n̂ cos θ − k̂

)
we see that we can identify the dipole strength as

p = 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
k̂

2.2 Differential cross section
Now return to the differential cross-section. Since there is no magnetic dipole moment, we set m = 0, leaving

dσ

dΩ
(n, ε,n0, ε0) =

k4

(4πε0E0)
2 |ε
∗ · p|2
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From here there are several cases, depending on the polarizations of the incoming and outgoing waves.
We have computed the dipole moment assuming the electric field is in the z-direction, but to find the

angular distribution it is easier to let the incoming wave propagate in the z-direction. Rotating the coordinate
system so that the incoming wave moves in the k̂-direction with polarization in the ε̂0-direction, we have

E = E0ε̂0e
ikz−iωt

p = 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
ε̂0

where the polarization vector, ε̂0, may be in any combination of the x and y directions. We consider these
two cases separately:

Case 1: Polarization in the x direction In this case, we have

ε0 = î

For the outgoing wave, the possible linear polarizations are in the directions orthogonal to the outward radial
unit vector, n. It is convenient to write out the unit vectors for spherical coordinates:

n = î sin θ cosϕ+ ĵ sin θ sinϕ+ k̂ cos θ

θ̂ = î cos θ cosϕ+ ĵ cos θ sinϕ− k̂ sin θ

ϕ̂ = −î sinϕ+ ĵ cosϕ

It is easy to check that these are orthonormal. The outward moving, scattered wave may have polarization
in any combination of the θ̂ and the ϕ̂ directions. We can now compute the differential cross-section. If the
measured polarization is in the θ̂ direction,

dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = î

)
=

k4

(4πε0E0)
2 |ε
∗ · p|2

=
k4

(4πε0E0)
2

∣∣∣∣θ̂ · 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
î

∣∣∣∣2
=

k4

(4πε0E0)
2

(
4πε0E0a

3
)2( ε− ε0

ε+ 2ε0

)2 ∣∣∣θ̂ · î∣∣∣2
=

k4

(4πε0E0)
2

(
4πε0E0a

3
)2( ε− ε0

ε+ 2ε0

)2

|cos θ cosϕ|2

=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ cos2 ϕ

Notice that k4a6 has units of area. For polarization in the ϕ̂ direction, we have

dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = î

)
=

k4

(4πε0E0)
2 |ε
∗ · p|2

=
k4

(4πε0E0)
2

∣∣∣∣ϕ̂ · 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
î

∣∣∣∣2
=

(
ε− ε0
ε+ 2ε0

)2

k4a6
∣∣∣ϕ̂ · î∣∣∣2

=

(
ε− ε0
ε+ 2ε0

)2

k4a6 sin2 ϕ
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Case 2: Polarization in the y direction Changing the incident polarization to the y-direction gives us
two more cases. For outgoing polarization in the θ̂ direction,

dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = ĵ

)
=

k4

(4πε0E0)
2 |ε
∗ · p|2

=
k4

(4πε0E0)
2

∣∣∣∣θ̂ · 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
ĵ

∣∣∣∣2
=

(
ε− ε0
ε+ 2ε0

)2

k4a6
∣∣∣θ̂ · ĵ∣∣∣2

=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ sin2 ϕ

Finally, for outgoing polarization in the ϕ̂ direction, we have

dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = ĵ

)
=

k4

(4πε0E0)
2 |ε
∗ · p|2

=
k4

(4πε0E0)
2

∣∣∣∣ϕ̂ · 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
ĵ

∣∣∣∣2
=

(
ε− ε0
ε+ 2ε0

)2

k4a6
∣∣∣ϕ̂ · ĵ∣∣∣2

=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 ϕ

2.3 Unpolarized incoming wave
When the incoming light is unpolarized, we average over the possible incoming polarizations. For outgoing
polarization in the θ̂ direction, this gives

dσ

dΩ

(
n, ε = θ̂,n0 = k̂

)
=

1

2

[
dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = î

)
+
dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = ĵ

)]
=

1

2

[(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ cos2 ϕ+

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ sin2 ϕ

]

=
1

2

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ

which depends only on θ, while for the outgoing polarization in the ϕ̂ direction,

dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂

)
=

1

2

[
dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = î

)
+
dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = ĵ

)]
=

1

2

[(
ε− ε0
ε+ 2ε0

)2

k4a6 sin2 ϕ+

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 ϕ

]

=
1

2
k4a6

(
ε− ε0
ε+ 2ε0

)2

which has no angular dependence.
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2.4 Final polarization not measured
As a final possibility, suppose we have unpolarized light coming in, and we do not measure the outgoing
polarization. Then the result is the sum of the results for the outgoing radiation,

dσ

dΩ

(
n,n0 = k̂

)
=

dσ

dΩ

(
n, ε = θ̂,n0 = k̂

)
+
dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂

)
=

1

2
k4a6

(
ε− ε0
ε+ 2ε0

)2 (
1 + cos2 θ

)
2.5 Total cross-section
The total light scattered gives an estimate of the size of the scatterer. In the present case, for unpolarized
light, we integrate over all angles,

σ =

ˆ
dσ

=

π̂

0

2πˆ

0

1

2
k4a6

(
ε− ε0
ε+ 2ε0

)2 (
1 + cos2 θ

)
dΩ

The integral is ˆ ˆ (
1 + cos2 θ

)
dΩ =

16π

3

so the total cross section is

σ =
8

3
πa2

(
ε− ε0
ε+ 2ε0

)2

k4a4

which in this case is the cross-sectional area, πa2, times a dimensionless factor depending on the ratio a
λ .

3 Example 2: Scattering by a small, perfectly conducting sphere
For a perfectly conducting sphere, the boundary conditions change. In problem 1 you are asked to work out
this case, so here we simply state the results for the electric and magnetic dipole strengths:

p = 4πε0a
3Einc

m = −2πa3Hinc

For linear polarization, Einc and Hinc are orthogonal and orthogonal to the direction of propagation,

Einc = Eincε̂0e
in0·x−iωt

Hinc =
1

µ0c
n0 ×Einc

so the dipole strengths are perpendicular as well. We can immediately write the differential cross-section,

dσ

dΩ
(n, ε,n0, ε0) =

k4

(4πε0Einc)
2

∣∣∣∣ε∗ · p +
1

c
m · (n× ε∗)

∣∣∣∣2
=

k4

(4πε0Einc)
2

∣∣ε∗ · (4πε0a3Einc
)
− 2πa3Hinc · (n× ε∗)

∣∣2
=

k4

(4πε0Einc)
2

∣∣∣∣ε∗ · (4πε0a3Einc
)
− 2

c
πa3 1

µ0c
(n0 ×Einc) · (n× ε∗)

∣∣∣∣2
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=
k4

(4πε0)
2

∣∣ε∗ · (4πε0a3ε̂0

)
− 2πa3ε0 (n0 × ε̂0) · (n× ε∗)

∣∣2
= k4a6

∣∣∣∣ε∗ · ε̂0 −
1

2
(n0 × ε̂0) · (n× ε∗)

∣∣∣∣2
Now compute the differential cross-section in the case of unpolarized incident light (average over incident

polarizations) but outgoing polarization parallel to the plane of incidence,

ε‖ =
1

sin θ
(n0 × n)× n

or outgoing polarization perpendicular to the plane of incidence,

ε⊥ =
1

sin θ
n0 × n

For the parallel case, working through the outrageous cross-products,

dσ‖

dΩ
=

1

2
k4a6

∑
ε̂0‖,ε̂0⊥

∣∣∣∣ε∗‖ · ε̂0 −
1

2
(n0 × ε̂0) ·

(
n× ε∗‖

)∣∣∣∣2

=
1

2
k4a6

∑
ε̂0‖,ε̂0⊥

∣∣∣∣ 1

sin θ
((n0 × n)× n) · ε̂0 −

1

2
(n0 × ε̂0) ·

(
n×

(
1

sin θ
(n0 × n)× n

))∣∣∣∣2

=
1

2

k4a6

sin2 θ

∑
ε̂0‖,ε̂0⊥

∣∣∣∣((n0 × n)× n) · ε̂0 −
1

2
(n0 × ε̂0) · (n× ((n0 × n)× n))

∣∣∣∣2

=
1

2

k4a6

sin2 θ

∣∣∣∣((n0 × n)× n) · ε̂0‖ −
1

2

(
n0 × ε̂0‖

)
· (n0 × n)

∣∣∣∣2
=

1

2
k4a6

∣∣∣∣cos θ − 1

2

∣∣∣∣2
For the perpendicular case,

dσ⊥
dΩ

=
1

2
k4a6

∑
ε̂0‖,ε̂0⊥

∣∣∣∣ε∗⊥ · ε̂0 −
1

2
(n0 × ε̂0) · (n× ε∗⊥)

∣∣∣∣2

=
1

2
k4a6

∑
ε̂0‖,ε̂0⊥

∣∣∣∣ 1

sin θ
(n0 × n) · ε̂0 −

1

2
(n0 × ε̂0) ·

(
n×

(
1

sin θ
n0 × n

))∣∣∣∣2

=
1

2
k4a6

∣∣∣∣ 1

sin θ
(n0 × n) · ε̂0⊥ −

1

2
(n0 × ε̂0⊥) ·

(
n×

(
1

sin θ
n0 × n

))∣∣∣∣2
=

1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2
If the final polarization is unmeasured, we sum these, giving

dσ

dΩ
=

dσ‖

dΩ
+
dσ⊥
dΩ

=
1

2
k4a6

∣∣∣∣cos θ − 1

2

∣∣∣∣2 +
1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2
= k4a6

[
1

2

(
cos2 θ − cos θ +

1

4

)
+

1

2

(
1− cos θ +

1

4
cos2 θ

)]
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= k4a6

[
1

2
cos2 θ +

1

8
cos2 θ − 1

2
cos θ − 1

2
cos θ +

1

8
+

1

2

]
= k4a6

[
5

8
cos2 θ − cos θ +

5

8

]
We define the polarization of the scattered radiation to be the difference between the parallel and per-

pendicular cross-sections, normalized by the total differential cross-section,

Π ≡ 1
dσ
dΩ

[
dσ⊥
dΩ
−
dσ‖

dΩ

]

=
1

k4a6
[

5
8 cos2 θ − cos θ + 5

8

] [1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2 − 1

2
k4a6

∣∣∣∣cos θ − 1

2

∣∣∣∣2
]

=
1

5
8 cos2 θ − cos θ + 5

8

[
1

2

(
1− cos θ +

1

4
cos2 θ

)
− 1

2

(
cos2 θ − cos θ +

1

4

)]
=

1
5
8 cos2 θ − cos θ + 5

8

[
3

8
− 3

8
cos2 θ

]
=

3 sin2 θ

5 cos2 θ − 8 cos θ + 5

4 Collections of scatterers
When light travels through a medium, it encounters many scatterers, so the scattering is a superposition of
the results of many scatterings. Suppose there are scatterers located at positions, xi. Then since the fields
vary as eik·x there will be factors

E (xi) ,B (xi) ∼ eikn0·xi

associated with the corresponding induced dipole moments,

pi,mi ∼ eikn0·xi

Recalling that the total differential cross-section depends on E×B∗, we will have a sum over conjugate pairs
of phase factors:

dσ

dΩ
=

k4

(4πε0E0)
2

∣∣∣∣∣∣
∑
i,j

[
ε∗ · pi +

1

c
mi · (n× ε∗)

]
eikn0·xie−ikn·xi

∣∣∣∣∣∣
2

Define
ikq · xi ≡ ik (n0 − n) · xi

and assume all the scatterers are identical, so that

pi = p

mi = m

Then the sum applies only to the phase factor, giving an overall factor of

F (q) =

∣∣∣∣∣∑
i

eikq·xi

∣∣∣∣∣
2

=
∑
i

eikq·xi

∑
j

e−ikq·xj

=
∑
i,j

eikq·(xi−xj)
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There are two important limiting cases of this. When the scatterers are randomly distributed, as in a gas,
the different phases tend to cancel, so only the diagonal terms contribute,

F (q) =
∑
i=j

eikq·(xi−xj)

=
∑
i=j

1

= N

where N is the total number of scatterers. The second limiting case is when the scatterers form some sort of
regular lattice. For a perfect lattice, the same thing happens, with the effect of a scatterer at xi cancelling
the effect of another scatterer at −xi. The wave progresses only in the forward direction (picture a clear
crystal of pure quartz, for example). Scatterings do occur as a result of thermal vibrations which make the
lattice imperfect. Jackson gives and explicit example of an exact result in eq.(10.20).

5 Perturbation theory of scattering

5.1 General formalism
Scattering can occur in a medium with spatially varying or time varying properties. If these variations are
small, they may be treated perturbatively.

The analysis starts by assuming that

D 6= ε0E

H 6= 1

µ0
B

so we treat all four fields as independent. Let ε0, µ0 be the unperturbed values of the dielectric constant and
permeability (and not the vacuum values). Then we can rewrite Maxwell’s equations in terms of the small
differences

D− ε0E
B− µ0H

Starting from

∇ ·D = 0

∇ ·B = 0

∇×E +
∂B

∂t
= 0

∇×H− ∂D

∂t
= 0

we have

0 = ∇×E +
∂B

∂t

=
1

ε0
∇×D− 1

ε0
∇× (D− ε0E) +

∂B

∂t

and taking the curl,

0 = ∇×
(

1

ε0
∇×D− 1

ε0
∇× (D− ε0E) +

∂B

∂t

)
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=
1

ε0
∇× (∇×D)− 1

ε0
∇× [∇× (D− ε0E)] + ∇× ∂B

∂t

=
1

ε0
∇ (∇ ·D)− 1

ε0
∇2D− 1

ε0
∇× (∇× (D− ε0E)) + µ0∇×

∂H

∂t
+ ∇× ∂

∂t
(B− µ0H)

= − 1

ε0
∇2D + µ0

∂2D

∂t2
− 1

ε0
∇× (∇× (D− ε0E)) + ∇× ∂

∂t
(B− µ0H)

so that

∇2D− µ0ε0
∂2D

∂t2
= −∇× (∇× (D− ε0E)) + ε0

∂

∂t
[∇× (B− µ0H)]

where the terms on the right are small. With harmonic time dependence, and setting µ0ε0ω
2 = k2, this

becomes (
∇2 + k2

)
D = −∇× (∇× (D− ε0E))− iωε0 [∇× (B− µ0H)]

5.2 Born approximation
We can now perform a systematic perturbation theory, allowing small corrections to the permittivity and
permeability,

ε = ε(0) + ε(1) (x) + ε(2) (x) + . . .

µ = µ(0) + µ(1) (x) + µ(2) (x) + . . .

where ε(0) = ε0, µ
(0) = µ0, and setting the fields equal to

D = D(0) + D(1) + . . .

E = E(0) + E(1) + . . .

D = εE

=
(
ε(0) + ε(1) + ε(2) + . . .

)(
E(0) + E(1) + . . .

)
= ε(0)E(0) +

[
ε(0)E(1) + ε(1)E(0)

]
+
[
ε(1)E(1) + ε(2)E(0) + ε(0)E(2)

]
+ . . .

B = B(0) + B(1) + . . .

H = H(0) + H(1) + H(2) + . . .

B = µH

=
(
µ(0) + µ(1) + µ(2) + . . .

)(
H(0) + H(1) + H(2) + . . .

)
= µ(0)H(0) +

[
µ(1)H(0) + µ(0)H(1)

]
+
[
µ(2)H(0) + µ(1)H(1) + µ(0)H(2)

]
+ . . .

This means that the differences on the right side of the wave equation are of higher order than the field on
the left.

D− ε0E = D− ε0
[
E(0) + E(1) + E(2) + . . .

]
=

[
ε(1)E(0)

]
+
[
ε(1)E(1) + ε(2)E(0)

]
+ . . .

B− µ0H = B− µ0

[
H(0) + H(1) + H(2) + . . .

]
= µ(0)H(0) +

[
µ(1)H(0) + µ(0)H(1)

]
+
[
µ(2)H(0) + µ(1)H(1) + µ(0)H(2)

]
+ . . .

−µ0

[
H(0) + H(1) + H(2) + . . .

]
=

[
µ(1)H(0)

]
+
[
µ(2)H(0) + µ(1)H(1)

]
+ . . .
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Notice that the small source terms only depend on lower order fields.
As a first approximation, we put in the zeroth order approximations for D and B,(

∇2 + k2
)
D(0) = −∇×

(
∇× (D− ε0E)

(0)
)
− iωε0

[
∇× (B− µ0H)

(0)
]

= 0

and we see that D(0) is the plane wave solution. At the next order, we have(
∇2 + k2

)
D(1) = −∇×

(
∇×

(
ε(1)E(0)

))
− iωε0

[
∇×

(
µ(1)H(0)

)]
The solution to this equation is the first Born approximation, and as we show below it gives the first
approximation to the scattered wave. Notice again that the wave equation for D(1) has sources that only
depend on the lowest order solutions for the fields, E(0) and H(0).

We may continue to arbitrary order, to find corrections. Thus, at second order, we have(
∇2 + k2

)
D(2) = −∇×

(
∇×

[
ε(1)E(1) + ε(2)E(0)

])
− iωε0

(
∇×

[
µ(2)H(0) + µ(1)H(1)

])
As long as we have a sensible perturbative series for the permittivity and permeability, we may continue this
process to arbitrary order.

5.3 First Born approximation for light scattering
For light scattering in gasses, higher order Born approximations are not generally appropriate because we
do not really know ε or µ. Instead, we can make use of the first Born approximation by supposing

ε = ε0 + δε (x)

µ = µ0 + δµ (x)

where ε0 and µ0 are constant (but not necessarily the vacuum values) and that there are small, position
and/or time dependent fluctuations in addition. First Born approximation immediately gives(

∇2 + k2
)
D(0) = 0

for the incoming plane wave, and the first order correction(
∇2 + k2

)
D(1) = −µ0ε0J

µ0ε0J = ∇×
(
∇×

(
δεE(0)

))
+ iωε0

[
∇×

(
δµH(0)

)]
This has solution

D(1) =
1

4π

ˆ
d3x

eik|x−x
′|J

|x− x′|

We now assume that the fluctuations in ε and µ are localized in space and look at the scattered wave D(1)

in the radiation zone,

D = D(0) + D(1)

= D(0) +
eikr

4πr

ˆ
d3x′e−ikn·x

′
J

The integral of J may be simplified by integration by parts by recalling the identity

∇× (fv) = ∇f × v + f∇× (v)

11



Applying this to the curl terms in the electric part of J ,

D
(1)
1 =

eikr

4πr

ˆ
d3x′e−ikn·x

′
∇′ ×

(
∇′ ×

(
δεE(0)

))
=

eikr

4πr

ˆ
d3x′∇′ ×

[
e−ikn·x

′
(
∇′ ×

(
δεE(0)

))]
−e

ikr

4πr

ˆ
d3x′

[
∇′e−ikn·x

′
×
(
∇′ ×

(
δεE(0)

))]
The first term on the right may be integrated, giving a result that depends on the fields at large distance,
where the perturbation, δε, vanishes. Then

D
(1)
1 = −e

ikr

4πr

ˆ
d3x′

[
−ike−ikn·x

′
n×

(
∇′ ×

(
δεE(0)

))]
=

ikeikr

4πr
n×
ˆ

d3x′
[(
e−ikn·x

′
∇′ ×

(
δεE(0)

))]
=

ikeikr

4πr
n×
ˆ

d3x′
[(
−∇′e−ikn·x

′
)
×
(
δεE(0)

)]
= − k

2

4π

eikr

r
n×

(
n×
ˆ

d3x′
[
e−ikn·x

′
δεE(0)

])
where we have done a second integration by parts and again dropped the surface term. The electric dipole
term is the lowest order term when we expand e−ikn·x

′
= 1− ikn · x′ + . . ., so the electric dipole field is

D
(1)
1 = − k

2

4π

eikr

r

ˆ
d3x′

[
n×

(
n×

(
δεE(0)

))]
Comparing with the general electric dipole expression,

Dsc =
k2

4π

eikr

r
[(n× p)× n]

we see that we have an effective electric dipole source,

p =

ˆ
d3x′δε (x′)E(0) (x′)

where E(0) is the incident wave.
The second term in J works the same way,

D
(1)
2 =

iωε0
4π

eikr

r

ˆ
d3x′e−ikn·x

′
[
∇′ ×

(
δµH(0)

)]
= − iωε0

4π

eikr

r

ˆ
d3x′e−ikn·x

′
[
−ikn×

(
δµH(0)

)]
= −k

2ε0
4πc

eikr

r

ˆ
d3x′e−ikn·x

′
[
n×

(
δµH(0)

)]
and this expression has the same form as the magnetic dipole field,

Dsc =
k2ε0
4π

eikr

r

[
−1

c
n×m

]
if we identify

m =

ˆ
d3x′

(
δµH(0)

)
12



The total scattering amplitude is Dsc = D(1) = D
(1)
1 + D

(1)
2 , and the form is exactly the same as the

form of the electric field for electric and magnetic dipole radiation,

Dsc =
k2ε0
4π

eikr

r

[
(n× p)× n− 1

c
n×m

]
If we define

Dsc =
eikr

r
Asc

then the differential cross-section follows immediately as

dσ

dΩ
=
|ε∗ ·Asc|2∣∣D(0)

∣∣2
If the initial wave has the form

D(0) = ε0D0e
ikn0·x

B(0) =

√
µ0

ε0
n0 ×D(0)

then the general multipole expression for the scattered wave becomes

Asc = − k
2

4π
n×

(
n×
ˆ

d3x′
[
e−ikn·x

′
δεE(0)

])
− k2ε0

4πc

ˆ
d3x′e−ikn·x

′
[
n×

(
δµH(0)

)]
=

k2

4π
D0

ˆ
d3x′eikq·x

′
[
δε

ε0
(n× ε0)× n− δµ

µ0
[n× (n0 × ε0)]

]
so that dσ

dΩ is the square of

ε∗ ·Asc

D0
=
k2

4π

ˆ
d3x′eikq·x

′
[
δε

ε0
ε∗ · [(n× ε0)× n]− δµ

µ0
ε∗ · [n× (n0 × ε0)]

]
Rewriting

ε∗ · [(n× ε0)× n] = ε∗ · ε0

ε∗ · [n× (n0 × ε0)] = (n0 × ε0) · (ε∗ × n)

= − (n0 × ε0) · (n× ε∗)

this becomes
ε∗ ·Asc

D0
=
k2

4π

ˆ
d3x′eiq·x

′
[
δε

ε0
ε∗ · ε0 +

δµ

µ0
(n0 × ε0) · (n× ε∗)

]
where q = k (n0 − n). A simple approximation is to then take δε constant inside a sphere of radius a, and
set δµ = 0. Then the integral becomes

ε∗ ·Asc

D0
=

k2

4π

ˆ
d3x′eiq·x

′
[
δε

ε0
ε∗ · ε0

]
=

k2

4π

δε

ε0
(ε∗ · ε0)

ˆ
d3x′eiq·x

′

=
k2

4π

δε

ε0
(ε∗ · ε0)

ˆ
r′2dr′dϕ′d (cos θ′) eiq·x

′

13



Taking n0 in the z-direction,
ˆ
r′2dr′dϕ′d (cos θ′) eiq·x

′
=

ˆ
r′2dr′dϕ′d (cos θ′) eiqr

′ cos θ′

= 2π

ˆ
r′2dr′d (cos θ′) eiqr

′ cos θ′

= 2π

aˆ

0

r′2dr′
1ˆ

−1

dxeiqr
′x

= 2π

aˆ

0

r′2dr′

[
eiqr

′x

iqr′

]+1

−1

= 2π

aˆ

0

r′2dr′

[
eiqr

′ − e−iqr′

iqr′

]

= 4π

aˆ

0

r′2dr′
[

sin qr′

qr′

]

=
4π

q

aˆ

0

dr′r′ sin qr′

=
4π

q

− d

dq

aˆ

0

dr′ cos qr′


=

4π

q

(
− d

dq

[
sin qr′

q

]a
0

)
=

4π

q

d

dq

(
− sin qa

q

)
=

4π

q3
(sin qa− qa cos qa)

In the long wavelength limit, k, q → 0, and this becomes

4π lim
q→0

(
sin qa− qa cos qa

q3

)
= 4π lim

q→0

(
qa− 1

3!q
3a3 − qa

(
1− 1

2q
2a2
)

+O
(
q4
)

q3

)

= 4π lim
q→0

(
− 1

3!q
3a3 + 1

2q
3a3 +O

(
q4
)

q3

)

= 4π lim
q→0

(
− 1

3!
a3 +

1

2
a3 +O

(
q3
))

=
4

3
πa3

The differential cross section is therefore

dσ

dΩ
=

∣∣∣∣ k2

4π

δε

ε0
(ε∗ · ε0)

4

3
πa3

∣∣∣∣2
= k4a6

∣∣∣∣ δε3ε0

∣∣∣∣2 |(ε∗ · ε0)|2
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This agrees, to first order in δε, with our result for scattering from a dielectric sphere,

dσ

dΩ
=

(
ε− ε0
ε+ 2ε0

)2

k4a6 sin2 ϕ

when we set ε− ε0 = δε and ε+ 2ε0 = 3ε0 + δε, since

ε− ε0
ε+ 2ε0

=
δε

3ε0 + δε

=
δε

3ε0

(
1 + δε

3ε0

)
=

δε

3ε0

(
1− δε

3ε0
+ . . .

)
=

δε

3ε0
+O

(
(δε) 2

)
6 The blue sky
Jackson gives two treatments of scattering in the atmosphere. The first is to approximate the atmosphere
as a dilute gas with randomly distributed molecules. Then taking the molecules to have dipole moments

pi = ε0γmolE

where γmol is the molecular polarizability, the effective dielectric constant is

δε = ε0
∑
i

γmolδ
3 (x− xi)

Then

ε∗ ·Asc

D0
=

k2

4π

ˆ
d3x′eiq·x

′
[
δε

ε0
ε∗ · ε0

]
=

k2

4π
ε∗ · ε0γmol

∑
i

ˆ
d3x′eiq·x

′
δ3 (x− xi)

=
k2

4π
ε∗ · ε0γmol

∑
i

eiq·xi

so that

dσ

dΩ
=

∣∣∣∣ε∗ ·Asc

D0

∣∣∣∣2
=

k4

16π2
|γmol|2 |ε∗ · ε0|2

∣∣∣∑ eiq·x
′

i

∣∣∣2
When we sum over all particles, the structure function

F =
∣∣∣∑ eiq·x

′

i

∣∣∣2
will be the total number of particles because of the randomness of the gas. For a single particle, we may
therefore drop the phase – the average differential cross-section per particle is just

dσ

dΩ
=

k4

16π2
|γmol|2 |ε∗ · ε0|2
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Now, for a dilute gas,
εr ≈ 1 +Nγmol

where εr is the relative dielectric constant and N is the number density of molecules. Therefore,

|γmol|2 =
|εr − 1|2

N2

Rewriting this in terms of the index of refraction,

n =

√
µ

µ0

ε

ε0

=
√
εr

n− 1 =
√
εr − 1

n− 1 =
√

1 + (εr − 1)− 1

n− 1 ≈ 1 +
1

2
(εr − 1)− 1

2 (n− 1) = εr − 1

so that the differential cross section becomes
dσ

dΩ
=

k4

16π2
|γmol|2 |ε∗ · ε0|2

=
k4

16π2

|εr − 1|2

N2
|ε∗ · ε0|2

=
k4

4π2

|n− 1|2

N2
|ε∗ · ε0|2

For unpolarized initial and final states, we average over initial and sum over final polarizations, so the
polarization factor becomes1

2

∑
ε0=i,j

( ∑
ε=ε1,ε2

)
|ε∗ · ε0|2 =

1

2

∑
ε0=i,j

∑
ε=ε1,ε2

|ε∗ · ε0|2

which we can find by dropping the magnetic dipole part of our earlier calculation for the sphere. Averaging
over

ε‖ =
1

sin θ
(n0 × n)× n

ε⊥ =
1

sin θ
n0 × n

we first find the parallel and perpendicular cases separately:

dσ‖

dΩ
=

(
k4

4π2

|n− 1|2

N2

)
1

2

∑
ε̂0‖,ε̂0⊥

∣∣∣ε∗‖ · ε̂0

∣∣∣2
1

2

∑
ε̂0‖,ε̂0⊥

∣∣∣ε∗‖ · ε̂0

∣∣∣2 =
∑

ε̂0‖,ε̂0⊥

∣∣∣∣ 1

sin θ
((n0 × n)× n) · ε̂0

∣∣∣∣2
=

1

2

1

sin2 θ

∑
ε̂0‖,ε̂0⊥

|((n0 × n)× n) · ε̂0|2

=
1

2

1

sin2 θ

∣∣((n0 × n)× n) · ε̂0‖
∣∣2

=
1

2
cos2 θ
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and

dσ⊥
dΩ

=

(
k4

4π2

|n− 1|2

N2

)
1

2

∑
ε̂0‖,ε̂0⊥

|ε∗⊥ · ε̂0|2

1

2

∑
ε̂0‖,ε̂0⊥

|ε∗⊥ · ε̂0|2 =
1

2

∑
ε̂0‖,ε̂0⊥

∣∣∣∣ 1

sin θ
(n0 × n) · ε̂0

∣∣∣∣2

=
1

2

∣∣∣∣ 1

sin θ
(n0 × n) · ε̂0⊥

∣∣∣∣2
=

1

2

If the final polarization is unmeasured, we sum these, giving

dσ

dΩ
=

dσ‖

dΩ
+
dσ⊥
dΩ

=

(
k4

4π2

|n− 1|2

N2

)
1

2

(
1 + cos2 θ

)
The total cross section is now given by integrating over angles

σ =
k4

8π2

|n− 1|2

N2

ˆ (
1 + cos2 θ

)
dΩ

=
k4

8π2

|n− 1|2

N2
2π

1ˆ

−1

(
1 + x2

)
dx

=
k4

8π2

|n− 1|2

N2
2π

[
x+

1

3
x3

]1

−1

=
k4

8π2

|n− 1|2

N2
2π

[
8

3

]
=

2k4

3π

|n− 1|2

N2

This is the total scattered flux per incident flux from a single molecule. Remembering that σ is the effective
area of scatterers, the total fraction of light scattered,

∣∣dI
I

∣∣, in a travel distance dx is therefore Nσdx.
Suppose the incident beam has intensity I0. Then

dI

I
= −Nσdx

I = I0e
−Nσx

The absorption coefficient, α = Nσ is therefore

α =
2k4

3π

|n− 1|2

N

This result describes Rayleigh scattering.
And improved version, due to Einstein, starts with the density fluctuations ∆Nj in cells of volume v, as

given by the Clausius-Mossotti relation (eq.4.70),

δεj =
(εr − 1) (εr + 2)

3Nv
∆Nj

17



Carrying out the cross-section calculation again, and summing over all cells, gives the attenuation coefficient
as

α =
k4

6πN

∣∣∣∣ (εr − 1) (εr + 2)

3

∣∣∣∣2 ∆N2
V

NV

where ∆N2
V is the mean-square number fluctuation per unit volume,

∆N2
V =

〈
N2
i

〉
− 〈Ni〉2

The final ratio may be expressed in terms of the isothermal compressibility, βT = − 1
V

(
dV
dP

)
T
,

∆N2
V

NV
= NkTβT

so that the absorption coefficient becomes

α =
kTβT

6π
k4

∣∣∣∣ (εr − 1) (εr + 2)

3

∣∣∣∣2
This is called the Einstein-Smoluchowski formula.

With NkTβT = 1 and the approximation

(εr − 1)
(εr + 2)

3
≈ 2 (n− 1) · 1

as above, we recover the previous result.
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