
Symmetry and tensors

Rotations and tensors
A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we
replace each vector, v, by a rotated vector, v′, given by multiplying by A,

v′ = Av

In index notation,
v′m =

∑
n

Amnvn

Since a rotation must preserve lengths of vectors, we require

v′
2
=
∑
m

v′mv
′
m =

∑
m

vmvm = v2

Therefore, ∑
m

vmvm =
∑
m

v′mv
′
m

=
∑
m

(∑
n

Amnvn

)(∑
k

Amkvk

)

=
∑
k,n

(∑
m

AmnAmk

)
vnvk

Since xn is arbitrary, this is true if and only if∑
m

AmnAmk = δnk

which we can rewrite using the transpose, At
mn = Anm, as∑
m

At
nmAmk = δnk

In matrix notation, this is
AtA = I

where I is the identity matrix. This is equivalent to At = A−1.
Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, εijk, have definite transformation

properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way
as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar.
A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v′, its new components
are given by

M
′

mn =
∑
jk

AmjAnkMjk

This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the
same way, we see that the Levi-Civita tensor transforms as

ε
′

ijk =
∑
lmn

AilAjmAknεlmn
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Recall that εijk, because it is totally antisymmetric, is completely determined by only one of its components,
say, ε123. Another way to say this is that every totally antisymmetric 3-index object, Aijk, is proportional
to εijk. In particular, this applies to ε

′

ijk, so we have

ε
′

ijk = λεijk

We can find λ by looking at one component,

ε
′

123 = λε123
∑
lmn

AilAjmAknεlmn

=
∑
lmn

A1lA2mA3nεlmn

and this last expression is exactly the determinant of the matrix A. Since the determinant of a product of
matrices equals the product of the determinants, and the determinant of the transpose of a matrix equals
the determinant of the matrix, we know that

det
(
AtA

)
= det (I)

detAt detA = 1

(detA)2 = 1

detA = ±1

If detA = +1, then the rotation is called a proper rotation, and we see that the Levi-Civita tensor is
unchanged by a proper rotation. This is a very special property: only two matrices (or combinations of
them) are rotationally invariant. They are the Levi-Civita tensor, εklm, and the Kronecker delta, δmn.

Exercise: Prove that the Kronecker delta is rotationally invariant.

Discrete symmetries
We next turn to discrete symmetries, that is, symmetries which have a finite number of eigenvalues. Discrete
symmetries are useful in classifying solutions, eliminating integrals, or checking calculations, so it is helpful
to know how each of our physical fields transforms under them. We discuss parity and time reversal.

Parity
If detA = −1, then A is called an improper rotation, and it may be written as the product of a proper
rotation and the parity operator, P, with components

Pmn = −δmn

Equivalently, we may define

Px = −x
Pt = t

Then vectors which behave in the same way,
Pv = −v

are called proper vectors. Proper vectors are odd under parity.
Notice that parity turns a right-handed coordinate system (i.e., one for which i×j = k) into a left-handed

system,

(−i)× (−j) = − (−k)
i′ × j′ = −k′
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Combinations of vectors may have different properties under parity. For example, suppose we take the
cross product of two vectors,

w = u× v

Since

Pu = −u
Pv = −v

we see that w is even under parity even though it looks like a vector. The dot product also gives an even
scalar,

P (u · v) = (−u) · (−v)
= u · v

There are various names for even- and odd-parity vectors. Odd parity vectors are either simply called
vectors, or are called polar vectors. Even parity vectors are called axial vectors or pseudovectors.

Time reversal
A second important discrete symmetry is time reversal, t→ −t. Any tensor is said to be even or odd under
time reversal if it stays the same (even) or changes sign (odd) when the sign of t is reversed. We define

Tx = x

Tt = −t

Examples
It is not hard to find the parity and time reversal. Starting with Newton’s second law,

F = m
d2x

dt2

The position vector x is a vector, mass is a scalar, and time is unaffected by parity, so the parity operator
applied to force,

PF = m
d2 (Px)
d (Pt)2

= −md2x

dt2
= −F

shows that it is also odd under parity and therefore a proper vector. Replacing t→ −t changes the derivatives,

d2

dt2
=

d

dt

d

dt
→
(
− d

dt

)(
− d

dt

)
=

d2

dt2

while leaving the position unchanged, so the acceleration and force are even under time reversal. The velocity
and momentum,

p = mv = m
dx

dt

however, are different. Like x they are vectors (odd under parity), but because of the single time derivative,
both p and v are odd under time reversal.

Angular momentum is a cross product,
L = x× p

Applying the parity operator,

PL = (Px)× (Pp)
= (−x)× (−p)
= L
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so L is a pseudovector. Under time reversal, L is odd, since

TL = (Tx)× (Tp)
= x× (−p)
= −L

The discrete transformations of electromagnetic quantities are also straightforward to find. Starting from
the Lorentz force law,

F = q (E+ v ×B)

the parity operator gives

PF = q ((PE) + (Pv)× (PB))

−F = q ((PE) + (−v)× (PB))

and substituting the original expression for the force into this,

−q (E+ v ×B) = q ((PE) + (−v)× (PB))

Comparing like terms shows that

PE = −E
PB = B

so that E is a (proper) vector and B is a pseudovector.
For time reversal,

TF = q ((TE) + (Tv)× (TB))

F = q ((TE) + (−v)× (TB))

q (E+ v ×B) = q ((TE) + (−v)× (TB))

so comparing terms we have

TE = E

TB = −B

The electric field is even and the magnetic field odd.
Finally, the Maxwell equations give the parity and time reversal properties of the charge and current

densities. First, notice that the del operator is odd under parity and even under time reversal:

P∇ =
∂

∂ (Pxi)
= −∇

T∇ = ∇

Then we have

Pρ = P (ε0∇ ·E)

= ε0 (P∇) · (PE)

= ε0 (−∇) · (−E)

= ρ

and

Tρ = T (ε0∇ ·E)

= ε0 (T∇) · (TE)

= ε0∇ ·E
= ρ
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so the charge density is even under both parity and time reversal. For the current density,

PJ =
1

µ0
P
(
∇×B− 1

c2
∂E

∂t

)
=

1

µ0

(
(P∇)× (PB)− 1

c2
∂ (PE)

∂ (Pt)

)
=

1

µ0

(
(−∇)×B− 1

c2
∂ (−E)

∂t

)
= − 1

µ0

(
∇×B− 1

c2
∂E

∂t

)
= −J

and for time reversal,

TJ =
1

µ0
T
(
∇×B− 1

c2
∂E

∂t

)
=

1

µ0

(
(T∇)× (TB)− 1

c2
∂ (TE)

∂ (Tt)

)
=

1

µ0

(
∇× (−B)− 1

c2
∂E

∂ (−t)

)
= − 1

µ0

(
∇×B− 1

c2
∂E

∂t

)
= −J

so current density is odd under both. This is consistent with J = ρv since v is odd under both time reversal
and parity.
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