The unification of Newtonian dynamics and electrodynamics
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We are now in a position to write both Newtonian dynamics and Maxwell electrodynamics in the common
framework of special relativity. As we have anticipated, Newton’s second law requires modification, but
Maxwell’s equations do not. Still, both must be written in terms of 4-dimensional, spacetime notation. This
notation lets us see immediately which equations possess Lorentz symmetry.

1 Relativistic kinematics and dynamics

1.1 Addition of 4-velocities

The ordinary 3-velocity no longer adds as a vector, because it does not transform linearly under boosts. To
see this, consider an infinitesimal boost in the z-direction,

cdt! = ~(cdt — Bdx)
de’ = ~(dz — Bcdt)
dy' = dy
dz = dz
If a particle moves with velocity
ot
Cdt
in the initial frame, then in the primed frame it moves with velocity
da’ y(dx — Bedt)
' (dt — %5dx)
ke
- _ lpgdx
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so the velocities do not add
uAu—v

We can see this in the vector case as well. Using the differential of the general transform

cdt! = v(cdt — - dx)
-1
dx’ = dx+ 762 (B -dx) B — vBedt
we find
o = dx’



so that not only does the component of u along v not simply add, the perpendicular component is modified
nonlinearly as well.

Nonetheless, spacetime is a vector space, and we should be able to add vectors. The problem here is
that u does not transform as a contravariant vector because the time derivative is taken with respect to the
coordinate time instead of the proper time. If we use the time, 7, which all inertial observers agree on, then
it is natural to define the 4-velocity as

uo - dz®
dr
This is easily seen to be a 4-vector. Since dr = d7’, we have
dz'®
dr’
dxlOé
dr
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and this is exactly the transformation law for a 4-vector. Since the transformation is linear, linear combina-
tions of 4-vectors will also transform as 4-vectors.

To see that this gives the correct result, we write the sum of two 4-vectors in terms of their time and
space components. Using the relationship between time and proper time,

UIOL —

dr = dt\/1—- —

derived above, and the notation 2* = (ct,x) we have for a single 4-vector,

o
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Every 4-velocity can be written in this way for some 3-velocity, v. Now recall that the importance of this
transformation law is that the magnitude of 4-vectors is Lorentz invariant. This means that ||u°‘||2 must be
some number that all inertial observers agree on. We can check this directly:
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The 4-velocity is therefore a normalized 4-vector.
Now suppose a particle with 4-velocity

u® = g, (cu)

= c¢(cosh(,,nsinh(,)

where
B = tanh(
v = cosh(
v8 = sinh(

in a given initial frame, is viewed from a second frame of reference moving with 3-velocity v = vi. Then a
Lorentz transformation of u® gives the velocity in the new frame,

ccosh¢’ = wgcosh(, — uj sinh(,
= ¢ (cosh (, cosh {, — sinh ¢, sinh ¢,)
= ccosh (¢, — ¢v)

csinh ¢’ = c¢(—cosh(,sinh(, + sinh (, cosh ¢,)
= csinh (¢, — ()
uy, = 0
uy = 0

so the rapidities simply add,

In terms of the velocities,

B = tanh(’
= tanh (Cu — Cv)
sinh (, cosh ¢, — cosh (, sinh (,
cosh (, cosh (,, — sinh (,, sinh ¢,
tanh ¢, — tanh (,
1 — tanh ,, tanh (,
/Bu B ﬁv

1- 5u5v




Dividing both the numerator and the denominator by cosh ¢, cosh (, gives
tanh ¢, — tanh ¢,

2 1 — tanh ¢, tanh ¢,
— Bu — Bv
1- ﬂuﬂv

which is the same as the previous result.

1.2 Relativistic energy and momentum

We next need to generalize the energy and momentum of a particle. The momentum should add as a 4-vector
and should reduce to p = mv in the ¢ — oo limit. To be linear in the 3-velocity, we take it linear in the
4-velocity,

p* = mu®
where we might have
m = m(v)
lim m(v) = Mmpyewton

v—0
and in order for this to transform as a 4-vector, its norm must be Lorentz invariant. Computing,
2 2
Ip*[I" = flmu®]]
2
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Since we already know that ¢? is invariant, the mass m must also be invariant in order for p* to be a 4-vector.
Now look at the various expressions for the 4-velocity:

[e3%

u® = 7(¢u)
= ¢(cosh(,nsinh()
We have similar expressions for the 4-momentum,

pa — mua

= (mye,myu)
= (meccosh (,, mensinh ¢,)

From this we identify the relativistic 3-momentum,

p = ymu
and notice that it has the correct limit,
I lim —
im = lim ——
[3*>0p BH01/1762
= mu

The meaning of the remaining component follows from the same limit, but we need to keep the first order
term:

e = myc®
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We immediately recognize the classical kinetic energy, together with the constant mass-energy. We therefore
define the relativistic energy,
E = p'c = myc?

We may also write the energy and momentum in terms of the rapidity,

p = — P
c

= (myc,myu)

= (mecosh (, mensinh ()

The invariant mass gives the important relationship between relativistic energy, momentum and mass:

2
=

E\?2
c
E = +/p2c2 + m2c

Though we take the positive square root here, the negative root also turns out to be important in quantum

field theory.
We now generalize Newton’s second law,

F=ma
by replacing the vectors on each side with 4-vectors,

du®

F*=m—
de

where the acceleration 4-vector is defined as the proper time rate of change of the 4-velocity. Notice that it
is orthogonal to the 4-velocity,

S [
*dr B ar
_ 1d ()
= 5
1d(—02)
= 5
= 0

This means that the force is also orthogonal to the velocity,
U F* =0
and since, in the rest frame of a particle, u® = (¢, 0), we must have

0 = uF“®
—cFY

In this frame, therefore, the 4-force may be written in terms of the 3-force,

[Fa]rest frame = (0’ ﬁ)

From this, we can boost to find the 4-force in any inertial frame.



Since the mass is invariant, this may also be written as

dp®
F* = —
dr

and, as a vector equation, may be summed over many particles to give the total force and total momentum.
For an isolated system (by definition, one with no net external force acting on it), we have conservation of
total momentum,

«
APiotal 0
dr
« _ e
ptotal,initial - ptotal,final

This relationship is used for collision problems.

2 Covariance of electrodynamics

Just as we modified Newton’s second law to write a covariant equation,
o _ dpP*
dr

we must rewrite the Lorentz force law, Maxwell equations and continuity equation in a manifestly covariant
form.

2.1 Lorentz force law

We begin with the Lorentz force law,

F — ¢ (E + Y« B)
c
= L(E+vxB)
c
We may replace the left side with the relativistic momentum, F¢ = %, making the right side into a

4-vector. To determine the covariant form of the electric and magnetic fields, we need to know that the
electric charge is invariant. Jackson discusses a number of experiments that test this to parts in 10'°, so
the velocity-independence of electric charge is well established. Furthermore, the right side of the equation
is linear in the velocity, and so must be linear in the 4-velocity of the charged particle, leaving us with an
equation of the form

J
¢ B
where our goal is to find the nature of the unknown tensor F'%. It is equivalent and more convenient to
. . 2
write this as a ( 0 ) tensor,
q
Fo = EFQBUg

called the Faraday tensor. From the Lorentz force law, we see that F*# must be linear in the electric and
magnetic fields. This is sufficient to find the full form of the Faraday tensor.
Equating the spatial components, a =i = 1,2, 3, in the limit v &~ 1 we have

i 9 ra
F' o= OF Pug
%(cE+va)i = %(Fiouo—i-Fijuj)
% (cE' + sijkvak) = % (—cF™ + Fiiv;)



This gives us two equations,
Fi0 _  _p
FZJU]‘ = E”k’UjBk

Since the second equation holds for all v; < ¢, we have F' il = ¢4k B, For the remaining components, we let
a =0,

1 dE q 00 0i

A = X —cF F

cry dt c’y( ¢ + )
dE )
E = 7qCF00 —+ q'UiFZO

Since the Newtonian rate of change of energy is ¢E - v, we require F°° = 0 and F® = E?. This determines
the Faraday tensor to be
0 Bt E? E3
—FE! 0 B® -B?
—-E? -B3 0 B!
—-E3 B? -B! 0

FoP =

We can derive this independently from the Maxwell equations.

2.2 Levi-Civita tensor

There is one more tensor we require. Just as we have the Levi-Civita tensor, €;;, in 3-dimensions, there is
a Levi-Civita tensor in 4-dimensions,

+1 Ewven permutations of 0,1,2,3
€apur = § —1 Odd permutationsof 0,1,2,3
0 Otherwise

Notice that if one index is fixed to be zero, then we recover the 3-dimensional Levi-Civita tensor, €¢;; = €;;-
Using this, we can form a second field tensor dual to the Faraday tensor,

1
Fop =

55015}“/1:’;“}

The components are easy to check. For a = 0,8 =i,

1
Foi = §€0iWFW

The remaining indices must be spatial,

1 J

Foi = 5601'ij
1 )
_ 552 k:EJ kmB

1

Antisymmetry tells us that F;g = —B;, so all that remains are the spatial components,
1 v
-Fij = §€mwF



(eijor P + 4510 F*0)

(EOiijOk - 5Oiijk0)

=N =N

= 3 (20ijk F** + €0ij5 F°F)

eiijOk
EijkEk
Therefore,
0 B! B? B3
-B! 0 E3 —E?

Fos=| g2 g o B
-B* E? _FE! 0
-1
Raising the «, 8 indices with n®? = L 1 changes the sign of the 0i and 70 components only,
1
o)
faﬁ — naynﬁu]:ﬂu
= ﬁa”fuuﬁﬁy
= [ [F][n]
= [l [
-1 0 0 O 0 -B' -B -pB? -1 0 0 O
_ 0 1 0 0 B 0 -E* EFE? 0 1 0 0
o 0 0 1 0 B2 E* 0 -E! 0 0 1 0
0 0 0 1 B> —-E?! E' 0 0 0 0 1

0 -B' -B? -B3
B! 0 E3 —E?
B? —E3 0 E!
B E* -E! 0

Therefore, we get F? from F*? by the replacements E — —B and B — E.

2.3 Continuity equation

The continuity equation is an easy place to start, and it gives us the 4-vector form of the source current. We
have

Ip
—+V.-J=0
ot
and we know that the gradient operator transforms as a covariant vector,
0
Oa = ok

10
= (caﬂ)

From this we can recognize the form of the continuity equation as a vanishing divergence,

0 = 0,J°



We immediately identify
J* = (pc,Jd)

so that the charge density times ¢, together with the current density, form a 4-vector.

2.4 The vector potential

Using the Lorentz gauge, we have found the following wave equations for the scalar and vector potentials,

U = —4dmp
OA = —41.]
c
Since
JY = (pe, )

is already known to be a 4-vector, and the d’Alembertian, [0 = 9,0%, is shown to be a Lorentz-invariant
operator, the potentials must also form a 4-vector,

A% = (9, A)

making the four equations into a single, 4-vector equation,

4
A% = — 2 o
C

2.5 The inhomogeneous Maxwell equations

Now consider the Maxwell equations,

V-B = 0
10B
VXE+-— = 0

x +08t
V-E = d4mp
c Ot c

V-E = 4np
c Ot c

because p and J belong to the same 4-vector. The right side is linear in the four derivatives, d,, and linear
in the fields. The object which we have that is linear in the fields is F*?, so we must combine J, and F?
in such a way as to give %J“. Since F*0 = (O7 E’) the divergence may be written as

V-E = —pc
C

9sF% = o
C

and consistency under Lorentz transformations demands that we extend this to g F*# = 2T J* Now setting
a =1 to look at the spatial components,

, Ar .
DpFiP = %JZ



QD F™ +0,F7 = ?Ji
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This is exactly Ampére’s law, so the two inhomogeneous Maxwell equations may be written as
4
OpF*P = —J°
c

In this form, the equations are manifestly Lorentz covariant. This simply means that we can see directly
from the form of the equation that its form is preserved by Lorentz transformations — our index conventions
guarantee this. To see it explicitly, recall that raised indices transform with Aaﬂ and lowered indices with
the inverse, A%, so that in a new inertial frame of reference,

85 — éﬁi]\%éa
FoP — PP = A% AP FH
JO = JY =A%

Therefore,
g FP 47Tja = A”9, (A® AP Frv 47rA'JK JH
B e - B P( pttv ) Ttk
a A v 4m a T
= 5.0, (AL P ) — A5 ]
« v 47T (03
= A9,0,(00F") — ?A s
= A% (aVF“” - 47TJﬂ)
c

=0

and the equation takes the same form in the boosted or rotated frame of reference.

2.6 Conservation of charge

We can derive the conservation of charge from the antisymmetry of F®#,
Focﬁ _ _Fﬁa
Suppose we take two derivatives and contract,
D00 F*? = —0,05F"*

We cna show that this expression vanishes identically. This follows because mixed partial derivatives com-
mute,

32
0z*0zP
82
0zB Oz

0504

0a05 =

10



so we may write the right hand side as

0005 FP* = —030,FP*
and renaming the dummy indices this is

—0,05FP* = —0,03F*F
Returning this to the original expression,

Do 05 P — 003 FP
20,05F*F = 0

so this double derivative vanishes identically by symmetry. Applying this to our relativistic expression

4
OpFP = 2T ra
c
4
0a05F* = Zo,J°
c
we have the continuity equation,
O0aJ® =0

showing that the Maxwell equations imply the conservation of charge.

2.7 Homogeneous Maxwell equations

Now consider the remaining Maxwell equations. In these,

V-B = 0
10B
VXE+-— =
c Ot
The roles of the electric and magnetic fields are reversed. In fact, we may get these two equations from the
the sourced Maxwell equations by the replacements

E — -B
B — E
J* — 0

and this is exactly what happens if we take the dual of the Faraday tensor,
1 v
faﬂ = §€a,8uVFH

which we showed above to embody exactly this replacement. We immediately see that the homogeneous
Maxwell equations must be
9pFP =0
We check this in detail. We have
0 -B' -B?> -B3
B! 0 E? —FE?
B? —F3 0 E!
B> E?! _—E! 0

FoP =
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so for a« = 0,

9sF% = 0
QHFP +aF" = 0
-0;B" = 0
so we recover V - B = 0. For a = 1,
9pFP? = 0
QFC+0;F7 = 0

a()Bi + ajEijkEk

to give exactly V x E + %%—? =0.

2.8 The homogeneous Maxwell equations and the potential
We know that the homogeneous Maxwell equations

V-B = 0

10B
VXEJ’_EE =

lead to the existence of the scalar and vector potentials. Vanishing divergence of B means that it may be

written as a curl,
B=VxA

and substituting this into the second equations gives a vanishing curl,

10

The term in parenthesis must therefore be a gradient, —V ¢, so solving for the electric field,

We would like to understand these results in a covariant way.
In three dimensions, the components of the curl of a vector are

[V xv]' = £k 9y,
1 ..
= ifwk (aj’l}k — 8kvj)
The important part of this expression is the antisymmetric matriz, v, — Opv;, which in 3-dimensions only
can be made into a vector using the Levi-Civita tensor, €%, The higher dimensional generalization of the

curl is therefore a matriz,
85% — 8avg

Consider the 4-dimensional curl of the 4-vector potential, s Ay —0nAg. For the o = 0, 8 = i components,
the 4-curl is

0;Ag — 00A; = —0;¢0 — O A; = E;

while the spatial components are
BiAj — 83141 = EijkBk

12



while the diagonal elements vanish. This is exactly the Faraday tensor in doubly covariant form,
Fop = 0sAq — 04 Ap
= Aap—Apa

where in the second line we introduce the convention of writing a partial derivative with a comma before
the subscript, for example, 0, f = f 4.

It can be shown that an antisymmetric tensor such as Fi, g can be written as the 4-curl of a vector if and
only if its totally antisymmetrized derivative vanishes, i.e.,

Fopp+ Fapa + Fuap — Faap — Fupa — Fapp =0
Notice that since Fig, = —F,3, this condition is just twice the simpler expression,
Fopp+ Fppa+ Fuap =0
We prove the theorem as follows. Suppose F,3 is given by a curl. Then its derivative is
Fogyp = 0u,08Aq — 0,0,A8
= Aa”@u - AB,aM

Notice that the partial derivatives are symmetric, so these terms will vanish under antisymmetrization.
Expicitly,

Fopu+ Fppa+ Fuap = (Aapp — Apap) + (Agpa — Appa) + (Apas — Aaup)
= Amﬂu - Aawﬂ + Aﬁ,ua - Aﬂ,au + Amaﬁ - Amﬂa
— 0

because of the equality of mixed partials, e.g., Ay gy = Aa,ug- Therefore, if F,g is the 4-curl of a potential,
then this condition is satisfied.
For the converse, begin with the condition

Fa&u + Fﬁma + Fua,ﬁ =0
and contract with the Levi-Civita tensor,

0 = e (Fapyu + Fpua + Fua,p)
= 3O, Fap

1 afuv
= 68“ (25 B Faﬂ)
— 60,7

so the condition implies the homogeneous Maxwell equations, which in turn imply the existence of the
4-potential.

2.9 Summary: The Maxwell equations in covariant form

The Lorentz force law may be written as
dp®
dr
where u® is the 4-velocity of a particle charge ¢ and p® is its 4-momentum. The Faraday tensor is then found
to be

q
= ZFBy
c B

0 E! E? E3
—FE! 0 B -B?
-E? -B3 0 B!
-E3 B* -pB! 0

FoP =
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with dual F,5 = %EQBWF #¥_The charge density and current density together form a 4-vector,
J* = (pc,T)

as do the scalar and vector potentials,

A% =(4,A)

Using these, we can replace all four Maxwell equations with only two manifestly Lorentz covariant equa-
tions,

(%FO‘B 41
c

OuFP = 0

JP

The second of these is the necessary and sufficient condition for the existence of the 4-potential, such that

Fop = Aap — Apa

3 Lorentz transformation of the Maxwell equations

3.1 The transformations of the fields

Now that we have written the Maxwell equations in covariant form, we know exactly how they transform
under Lorentz transformations. Consider a boost in the z-direction, from O to O given by the transformation
matrix

vy =6 00

a_| - v 00
M= 0 0 10
0 0 01

. . 2 .
Then, since the Faraday tensor is a ( 0 ) tensor, it transforms as

FoP = MYMSGF™
= MG F"MS

« v t] @

= M#FN [M]y

where the rearrangement may now be written as the matrix product,

F=MFM!
We find,
v =8 0 0 0 E! E? E® v =8 0 0
foB _ -8 ~v 0 0 —-E' 0 ( B3 —B? -8 v 00
0 0 10 -E2 -B¥ 0 B! 0 0 10
0 0 0 1 -E¥ B2 —B' 0 0 0 0 1
vy =B 00 —yBE! YE! E*  E°
_ | v 00 —yE! VBET  -B®  B?
- 0 0 1 0 —yE? —4B8B3 ~BE?*++yB%> 0 —B!
0 0 01 —vyE3 +~yB8B? ~BE3—-~yB?> B! 0
0 (v =~°B6*) E'  ~E®>+78B*  yE?—43B?
_ | -2 E 0 —YBE? —yB*® —9BE®+yB?
—vE? —438B3  4BE%++B3 0 -B!
—yE® +9BB*  yBE® —yB? B! 0
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0 E! v (E?+8B%)  ~(E®-pBB?
—E! 0 —y (B*+ BE?) v 532 - 5E3§

—v (E? +BB3)  ~(B*+ BE?) 0 -B!

—y (E3 - ﬂBQ) —y (B2 — 5E3) B! 0

Comparing components with
0 E' E?* FE3
-E' 0 -B® B?
-E* B* 0 -B!
—-E* -B*> B' 0

we see that

El _ El
E* = v (E*-pBB®)
E? = ~(E®+pBB?
Bl _ Bl
B? = v (B*+BE®)
B* = ~(B®-BE?)

which we can write vectorially in terms of the components of E and B parallel and perpenducular to 3,

E = @(ﬁ'E)ﬁ
B, - E—%(ﬁ-E)ﬁ

El = E
E, = YE, -+8xB,
B, = B
B, = 1B -18xE,
and we may reconstruct the full vectors,
E = EH-‘FEJ_
= Ej+7EL-18xB.
= ;Q(ﬂ'E)ﬂ‘F’Y(E_ﬂlQ(IB'E),B)—’}/,@X(B—;(ﬂ-B)ﬂ)
= %(ﬁ'E)5+7E—%7(B-E)ﬁ—7BxB
= V(E—QXB)—Wﬂgl(ﬂE)ﬁ
= 7(B-pBxB)- 1 (B-B)B
,YQ

2

— gl
= 1(B-BxB) - (8 B)B

B +9BL -8 xEL

sl
I
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= ;Q(ﬂ'B)6+’Y<B—ﬁ12(,6'B),8>—’}/,@X (E—;?(ﬁ-E)ﬂ)
= AB-pxE - (0B

so the complete transformation laws are

2

B = 7(B-8xB)- 1 (8-E)B

2

,
1B-BxE)- 1 (8-B)B

B

3.2 Example: Pure electric field from a rapidly moving frame

Suppose we have a pure electric field in the original frame, with B = 0. Then in O, as the speed approaches
A 2
the speed of light, 3 — 3, # — v, and the electric field approaches

2

B = 9E- 5 (8E)B
— (5 (58)3)
= 1Ey

so the electric field flattens into the plane orthogonal to the motion. At the same time, the magnetic field
approaches R .
B=-—038xE

which also lies in the orthogonal plane, and is perpendicular to E. The Poynting vector of the field in the
rapidly moving frame is

N 1 -~
S = —ExB

|
|
|
=
'_
X
—
E >
X
=
—

- -2 (5%~ (p-B)E- 5 (5-8) ((5-8) 5~ 'E) )
- (- (-B)8- 3 (3-8) 5+ (38)m)
2 N N
o)
. E%.
i
where we have used
E. - E-5(8-E)f
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B = Ezfé(ﬁ'mﬁéw'm?
~ B- 5 (8B

Not surprisingly, we find a strong flux opposing the observer’s motion.

4 Thomas precession and the BMT equation

First consider orbital angular momentum,
L=rxp

We may immediately generalize this to spacetime by defining

1
Lof = A (zo‘pﬁ — xﬁpa)

where x® is the position 4-vector of a particle and p® is its momentum. Consider the dual,
Elw = E/Ll/oz,BLaﬁ
= Euuaﬁxapﬁ

and contract with the observer’s 4-velocity,

1
L, = -u"L,,
e e

«
= Eul—tauua,ﬁx pﬁ

Now look at L, in the rest frame of the observer, where u* = (¢, 0),

1

LV Eu”ﬁuy

= 50Va['3xapﬂ
(07 Eijkxjpk)
= (0,L)

This shows that we expect angular momentum to be described by a spacelike vector, and we’ll treat the spin
vector in the same way. This property, of reducing to a purely spacelike vector in the rest frame, may be
characterized by orthogonality to the 4-velocity, u*L, = 0.

We are now in a position to consider the fully relativistic evolution of spin angular momentum. We know
that the equation of motion of the 3-dimensional spin vector, s, in the rest frame O of the particle is

d N
—S~ = £s><B
dt 2me

and want to generalize this to a covariant expression. We begin by generalizing the spin 3-vector to a spin
4-vector, which we assume reduces to
5% =(0,s)

in the rest frame (7), or equivalently,

and this relation is invariant.
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To generalize the rest frame equation, we will clearly want the proper time derivative of the 4-vector spin
ds®
dr

expressed in terms of tensors. Rather than trying to transform the known expression, we try to write the

most general covariant expression we can that reduces to the known non-relativistic expression. The only
tensors relevant to the problem are

du®
FoB oy g ——
dr
Notice that the 4-acceleration, a® = %, has a part expressible in terms of the first two but may also depend

. . . . . @ .
on non-electromagnetic forces, so we need to consider it separately. Our goal is to write % in terms of

these, i.e., we need to construct a 4-vector. Looking at the classical limit in the rest frame, we expect that
the correct expression is at most linear in the fields £, and each term is linear in the spin vector. Then
there are only three possibilities:

Fa585

(s F* uy,) u®

duf\

(Notice that (’U,BSQ) u® = 0, F*Pug is independent of s, and (F*u,u,)u® = 0 and since the acceleration
is already linear in F'*? we do not consider terms involving F*# ag).

We bethin with an arbitrary linear combination of these, and ask what combination gives the right
behavior in the particle rest frame,

ds® du®

First, notice that since U*S,, = 0, it follows that

d
0 = — (u%sq)

so that
wlsa _du
dr *dr
Rewrite this using the Lorentz force law, combined with other non-electromagnetic forces, F'®
(e}
m% =F*+ %UBFO"B
Then the contraction of the rate of change of spin with the 4-velocity is
wo B _ _ du?
dr “dr
= —isa (Fa + EFQ’G’ug)
m c

Take this contraction with our ansatz, substituting it into the final term as well:

ds® _ af N2 « duﬁ «@
- = AF*Psg 4+ B (s, F" u,)u® + C | s o) v
ds® duP
Ua;j = AuaF*Psg+ B (5, F"u,) ugu® + C (Sﬁ;_) Up S
! « € Ba af 2 v 02 8 e ap
——5, (F + —ugF ) = Au F*sg—c*B (s, F*u,) — —C (sﬁ (F + —ulF ))
m me m me
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Since the non-electromagnetic force F'® is independent of the electromagnetic force, we may split this into
two independent equations,

1 c?
——5,F% = ——CsgF”
m m
e Bo aB 2 % c € af
—EUBF Sa = AugF*Psg—c*B (s, F"u,) — EC (%uaF 55>

The first of these immediately gives C = Ciz, while the second becomes

9 2 e e
O = A+C B—*C*-‘-T UﬂFﬁQSa
m mc m2c
= (A+2B)ugFPs,
With these restrictions, the equation of motion reduces to
ds® A 1 du?
_ B v
o = AF*P sz — = (spFH" ) u® + 2 (SBdT ) u®

Now consider the limit to the rest frame, in the case of a pure magnetic field, so E = 0 in F*? and the
4-velocity is given by
u® = (¢, 0)
Then s, F*u, = —cs;FF0 = ¢s; E* = 0 so the middle term drops out. The final term is purely timelike, so
the spatial components give
ds'  ds’

o~ a - AT

0 0 0 0
0 0 B3 -B?
0 -B* 0 B!
0 B -—-B! 0
0
B3s? — B%s3
Bls® — B3st
B?s! — Bls?

o

O »w »
W N =

or simply

ds
— =A(sxB
o = A xB)
and comparing this to

ds  ge

— = B
dt 2mcs %

we see that
_ g€
2mc
and substituting the electromagnetic force for the acceleration, the full equation of motion for s becomes

ds® 1 du?
S _ ﬁFQﬂS . ge (SHFMVUV) ’LLO‘_|_ 2( U )ua
C

dr 2me BT omes 56 dr

ge ge » 1 e
- QmCF(XﬂSB © 2med (s ") u + 2 (SB (%Fuﬁuﬁ)) u?

ge (g—2)e
— —chF“'Bsﬁ o (s F'* uy) u®

This is the BMT equation. The signs differ from Jackson because we use the opposite convention for the
sign of the metric, 143.
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