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We start with the Maxwell equations in a uniform medium without sources:

∇ ·D = 0

∇ ·B = 0

∇×H− ∂D

∂t
= 0

∇×E+
∂B

∂t
= 0

and assume harmonic time dependence of the fields and linearity of the medium. We can then build more
complicated waves by superposition. We set

E (x, t) = E (x, ω) e−iωt

with the same dependence for the other fields. Notice that we have made an analytic extension to complex
fields. Because the Maxwell equations are linear, either the real or the imaginary parts will solve the
equations. It is also useful to allow ε and µ be complex functions of frequency for the description of
dissipation and dispersion. For now, think of ε and µ as real.

Then

∇ ·D = 0

∇ ·B = 0

∇×H+ iωD = 0

∇×E− iωB = 0

Notice that since the divergenc of a curl vanishes, the two divergence equations follow automatically from
the second pair of equations. Taking a second curl of the third equation and using the last,

∇× (∇×B) + iωεµ∇×E = 0

∇ (∇ ·B)−∇2B+ iωεµ (iωB) = 0

∇2B+ εµω2B = 0

with a similar calculation for the electric field yielding ∇2E+εµω2E = 0 If we assume a plane wave travelling
in the n̂ direction, by setting k = kn̂ and

E = Eei(k·x−ωt)

B = Bei(k·x−ωt)

Substituting,

(ik)
2
+ εµω2 = 0

k2 = εµω2

k = ±√εµω
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A point of constant phase of the wave is now given by

ϕ0 = k · x− ωt
= (±√εµn̂ · x− t)ω

so, taking the differential, that point moves so that

0 = ±√εµωn̂ · dx− ωdt

n̂ · dx
dt

= ± 1
√
εµ

There is no motion orthogonal to n̂, and the speed of the point of constant phase (for example, the crest of
a wave) is

v =
1
√
εµ

This is called the phase velocity.
We must still solve the original equations. Substituting into each, we find

n̂ · E = 0

n̂ ·B = 0

ikn̂×B + iωεµE = 0

ikn̂× E − iωB = 0

so that the electric and magnetic fields are orthogonal to the direction, n̂, of propagation. In addition, the
final equation requires

B =
√
εµn̂× E

Substituting this, the third equation becomes

n̂× (
√
εµn̂× E) = −√εµE

n̂× (n̂× E) = −E
n̂ (E · n̂)− E = −E

so it is identically satisfied.
We define the index of refraction, n, as the ratio of the speed of light in vacuum to the speed of light in

a medium:
n ≡ c

√
µε

For a plane electromagnetic wave, with real index of refraction, we therefore have the electric field,
magnetic field, and direction of propagation all mutually perpendicular. The magnitude of the magnetic
field is related to the magnitude of the electric field by

B =
c

n
E

To completely specify the wave we therefore need:

1. The frequency, ω.

2. The direction of propagation, n̂.

3. The magnitude and direction of E in the plane perpendicular to n̂.
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To specify the direction of the electric field, it is useful to introduce a set of orthonormal basis vectors,
ε1, ε2,n, with ε1 or ε2 giving the direction of E and ε2 = n × ε1 or −ε1 giving the direction of B. The
direction of the electric field is called the polarization. A general wave may be a superposition of different
frequencies, different directions n, and/or different polarizations.

We may also find the Poynting vector complexified. To get the right expression, consider the real part of
our solution above,

E = ε1E cos (k · x− ωt)
B = B cos (k · x− ωt)

= ε2
c

n
E cos (k · x− ωt)

For these, the Poynting vector is

S = E×H

=
cE2

µn
n cos2 (k · x− ωt)

=

√
ε

µ
E2n cos2 (k · x− ωt)

so the time average is

〈S〉 =

√
ε

µ
E2n

〈
cos2 (k · x− ωt)

〉
=

1

2

√
ε

µ
E2n

This differs from Jackson’s result by a factor of 1
2 . However, Jackson states that the time averaged flux of

energy is given by the real part of

S =
1

2
E×H∗

=
1

2

√
ε

µ
E2n

In our example, this becomes

S =
1

2

√
ε

µ
E2n

What happens is that the factor of 1
2 gives the time average of a sine or cosine wave, while the complex

conjugation cancels the phase factors altogether. However, eq. 7.13 cannot be correct because it has no time
dependence, whereas a real wave will have oscillating flux,

S =

√
ε

µ
E2n cos2 (k · x− ωt)
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