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1 Zones
We will see that the problem of harmonic radiation divides into three approximate regions, depending on
the relative magnitudes of the distance of the observation point, r, and the wavelength, λ. We assume
throughout that the extent of the source is small compared to the both of these, d ≪ λ and d ≪ r. We
consider the cases:

d ≪ r ≪ λ (static zone)

d ≪ r ∼ λ (induction zone)

d ≪ λ ≪ r (radiation zone)

or simply the near, intermediate, and far zones. The behavior of the fields is quite different, depending on
the zone.

The near and far zones allow us to use different approximations. Since d is always much smaller than r
or λ, we may always expand in powers of d

r and/or d
λ . Starting from

A (x) =
µ0

4π

ˆ
d3x′J (x′) eik|x−x′|

|x− x′|

we expand

eik|x−x′|

|x− x′|
=

eik(r−r̂·x′+···)

r − r̂ · x′ + · · ·

=
eikr

r

e−ikr̂·x′

1− 1
r r̂ · x′

=
eikr

r
(1− ikr̂ · x′ + · · ·)

(
1 +

1

r
r̂ · x′ + · · ·

)
=

eikr

r

(
1 +

(
1

r
− ik

)
r̂ · x′ + · · ·

)
We can work from this expansion, or we can restrict to a particular zone to simplify the expansion.

There is another possible expansion, in terms of spherical harmonics. For the denominator,

1

|x− x′|
=
∑
l,m

4π

2l + 1

r′l

rl+1
Ylm (θ, φ)Y ∗

lm (θ′, φ′)

This is most useful in the near zone, where the factor of eik|x−x′| is close to unity.
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1.1 The near zone
1.1.1 Near zone

In the near zone, r ≪ λ so

k |x− x′| = k
√
r2 + x′2 − 2x · x′

< k
√
r2 + d2 − 2rdx̂ · x̂′

< kr

√
1− 2d

r
x̂ · x̂′ +

d2

r2

≪ 1

eik|x−x′| ≈ 1

With this approximation, the wavelength dependence drops out and the potential becomes

A (x) =
µ0

4π

ˆ
d3x′ J (x′)

|x− x′|

=
µ0

4π

∑
l,m

4π

2l + 1

Ylm (θ, φ)

rl+1

ˆ
d3x′J (x′) r′lY ∗

lm (θ′, φ′)

The only time dependence is the sinusoidal oscillation, e−iωt, with the potential given in terms of the
moments,

Klm ≡
ˆ

d3x′J (x′) r′lY ∗
lm (θ′, φ′)

of the current distribution. These are just like the multipole moments for the electrostatic potential, but
with the charge density replaced by the current density. The lowest nonvanishing term in the series will
dominate the field, since increasing l decreases the potential by powers of order d

r .

1.2 Intermediate zone
In the intermediate zone, with r ∼ λ, an exact expansion of the Green function is useful. This is found by
expanding

G (x,x′) =
eik|x−x′|

4π |x− x′|
in spherical harmonics,

G (x,x′) =
∑
l,m

glm (r, r′)Ylm (θ, φ)Y ∗
lm (θ′, φ′)

and solving the rest of the Helmholtz equation for the radial function. The result is spherical Bessel functions,
jl (x) , nl (x), and the related spherical Henkel functions, h(1)

l , h
(2)
l , which are essentially Bessel function times

1√
r
. They are discussed in Jackson, Section 9.6. The vector potential then takes the form

A (x) = ikµ0

∑
l,m

h
(1)
l (kr)Ylm (θ, φ)

ˆ
d3x′J (x′) jl (kr

′)Y ∗
lm (θ′, φ′)

The spherical Bessel function may be expanded in powers of kr to recover the previous near zone approxi-
mations.

There are also applicable approximation methods. Although r and λ are of the same order of magnitude,
both are much greater than d, so we may expand in a double power series. This gives the multipole expansion
in subsequent sections.
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1.3 Far zone
1.3.1 Truncation of the series in r

In the far zone, we still have both both 1
r r̂ · x

′ ≪ 1 and ikr̂ · x′ ≪ 1, but now 1
r r̂ · x

′ ≪ kr̂ · x′, so we expand
only to zeroth order in x′

r ∼ d
r first. With

|x− x′| ≈ r

the integrand becomes

eik|x−x′|

|x− x′|
≈ eik(r−r̂·x′)

r

=
eikr

r
e−ikr̂·x′

The potential is then

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x′

Now we use kx′ ≲ kd ≪ 1 and expand the exponential. We may carry this power series in kx′ to order N

as long as we can still neglect (kx′)
N relative to d

r ,

d

r
≪ (kd)

N

The expansion is then

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x′

=
µ0

4π

eikr

r

∑
n=0

(−ik)
n

n!

ˆ
d3x′J (x′) r′n (r̂ · r̂′)n

Again, only the lowest nonvanishing moment of the current distribution
ˆ

d3x′J (x′) r′n (r̂ · r̂′)n

dominates the radiation field. Notice that
´
d3x′J (x′) e−ikr̂·x′

is just the Fourier transform of the current
density.

2 Multipole expansion of time dependent electromagnetic fields

2.1 The fields in terms of the potentials
Consider a localized, oscillating source, located in otherwise empty space. Let the source fields be confined
in a region d ≪ λ where λ is the wavelength of the radiation, and let the time dependence be harmonic,
with frequency ω,

A (x, t) = A (x) e−iωt

ϕ (x, t) = ϕ (x) e−iωt

J (x, t) = J (x) e−iωt

ρ (x, t) = ρ (x) e−iωt

We are interested in the field at distances r ≫ d.
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In general, we have the fields in terms of the scalar and vector potentials,

E = −∇ϕ− ∂A

∂t
B = ∇×A

However, for most configurations the vector potential alone is sufficient, since the Maxwell equation, ∇ ×
H− ∂D

∂t = 0, shows that
−iωϵ0E = ∇×H

Dividing by −iωϵ0 = −ikcϵ0 = −ik
√

ϵ0
µ0

and defining the impedence of free space, Z =
√

µ0

ϵ0
, gives the

electric field in the form
E =

iZ

k
∇×H

2.2 Electric monopole
There is one exception to this conclusion: the case of vanishing magnetic field. In this case, we may use the
scalar potential satisfying

□ϕ = − ρ

ϵ0

with solution

ϕ (x, t) =
1

4πϵ0

ˆ
d3x′
ˆ

dt′
ρ (x′, t′)

|x− x′|
δ

(
t′ − t+

1

c
|x− x′|

)
with k = ω

c . For d
r ≪ 1 we have |x− x′| ≈ r and this becomes

ϕ (x, t) =
1

4πϵ0r

ˆ
d3x′ρ

(
x′, t− r

c

)
=

qtot
(
t− r

c

)
4πϵ0r

that is, just the Coulomb potential for the total charge at time t = r
c . But for an isolated system, the

continuity equation, ∂ρ
∂t +∇ · J = 0, may be integrated over any region outside d, givingˆ

d3x

(
∂ρ

∂t
+∇ · J

)
= 0

d

dt

ˆ
d3xρ+

ˆ
d3x∇ · J = 0

d

dt

ˆ
d3xρ = −

˛
d2xn · J

dqtot
dt

= 0

Therefore, the total charge cannot change, so qtot
(
t− r

c

)
= qtot = constant, and the potential is independent

of time,
ϕ (x, t) =

qtot
4πϵ0r

As a result, there is no electric monopole radiation.
Thus, when the conserved electric charge is confined to a bounded region, all radiation effects follow from

the resulting currents, via the vector potential, with the fields following from

E =
iZ

k
∇×H

B = ∇×A

We first consider general results for A (x, t), then some cases which hold only in certain regions.
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2.3 The vector potential
We now examine the vector potential. Consider a localized, oscillating source, located in otherwise empty
space. We know that the solution for the vector potential (e.g. using the Green function for the outer
boundary at infinity) is

A (x, t) =
µ0

4π

ˆ
d3x′
ˆ

dt′
J (x′, t′)

|x− x′|
δ

(
t′ − t+

1

c
|x− x′|

)
Then

A (x) e−iωt =
µ0

4π

ˆ
d3x′
ˆ

dt′
J (x′) e−iωt′

|x− x′|
δ

(
t′ − t+

1

c
|x− x′|

)
=

µ0

4π

ˆ
d3x′J (x′) e−iω(t− 1

c |x−x′|)

|x− x′|
so that with k = ω

c , we have

A (x) =
µ0

4π

ˆ
d3x′J (x′) eik|x−x′|

|x− x′|
A general approach to finding the vector potential, similar to the static case, is to expand the denominator,

1

|x− x′|
=

∑
l,m

4π

2l + 1

r′l

rl+1
Ylm (θ, φ)Y ∗

lm (θ′, φ′)

Then the vector potential is

A (x) =
µ0

4π

∑
l,m

4π

2l + 1

1

rl+1
Ylm (θ, φ)

ˆ
d3x′J (x′) r′leik|x−x′|Y ∗

lm (θ′, φ′)

and since the integral is boundedˆ
d3x′J (x′) r′leik|x−x′|Y ∗

lm (θ′, φ′) <
4

3
πdl+3Jmax

the terms fall off with increasing r as
(
d
r

)l+1
. We may therefore approximate the vector potential by the

lowest nonvanishing term.
An easier way to keep track of increasing powers of d

r is to simply expand the denominator,

1

|x− x′|
=

1

r

(
1 +

r′2

r2
− 2r′

r
x̂ · x̂′

)−1/2

=
1

r

(
1− 1

2

(
r′2

r2
− 2r′

r
x̂ · x̂′

)
+

3

8

(
r′2

r2
− 2r′

r
x̂ · x̂′

)2

+O
(
d3

r3

))

=
1

r

(
1 +

r′

r
(x̂ · x̂′)− 1

2

r′2

r2

(
1− 3 (x̂ · x̂′)

2
)
+O

(
d3

r3

))
and also expand the exponent,

|x− x′| =
√
r2 + r′2 − 2x · x′

= r

√
1− 2r′

r
x̂ · x̂′ +

r′2

r2

= r

(
1 +

1

2

(
−2r′

r
x̂ · x̂′ +

r′2

r2

)
− 1

2!

1

4

(
−2r′

r
x̂ · x̂′ +

r′2

r2

)2

+O
(
d3

r3

))

= r

(
1− r′

r
(x̂ · x̂′) +

1

2

r′2

r2

(
1− (x̂ · x̂′)

2
)
+O

(
d3

r3

))
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so that

eik|x−x′| = e
ikr−ikr r′

r (x̂·x̂
′)+ 1

2 ikr
r′2
r2

(
1−(x̂·x̂′)

2
)
+O

(
d3

r3

)
= eikre−ikr′(x̂·x̂′)e

1
2 ikr

r′2
r2

(
1−(x̂·x̂′)

2
)

= eikr
(
1− ikr′ (x̂ · x̂′)− 1

2
k2r′2 (x̂ · x̂′)

2
+ · · ·

)(
1 +

1

2
i (kr′)

(
r′

r

)(
1− (x̂ · x̂′)

2
)
+ · · ·

)
and since both kr′ and r′

r are small,

eik|x−x′| = eikr
(
1− ikr′ (x̂ · x̂′)− 1

2
k2r′2 (x̂ · x̂′)

2
+

1

2
ikr′

(
r′

r

)(
1− (x̂ · x̂′)

2
)
+ · · ·

)
Substituting this into both the exponential and the denominator,

A (x) =
µ0

4π

ˆ
d3x′J (x′) eik|x−x′|

|x− x′|

=
µ0

4π

eikr

r

ˆ
d3x′J (x′) +

µ0

4π

eikr

r

(
1

r
− ik

) ˆ
d3x′J (x′) (x̂ · x′)

−µ0

8π

eikr

r

ˆ
d3x′J (x′) r′2

(
1

r2
− ik

r
+

(
k2 +

3ik

r
− 3

r2

)
(x̂ · x̂′)

2
)
+O

(
d3

r3

)
The first integral is of order 1

r , the second is of order max
(
1
r
d
r ,

1
rkd

)
and the third of order max

(
1
r
d2

r , 1
r
kd2

r , 1
rk

2d2
)
,

where both d
r and kd are small. We show below that the first of these gives the electric dipole radiation,

while the second gives both electric quadrupole and magnetic dipole radiation. The third and higher terms
give higher electric and magnetic multipoles.

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′) +

µ0

4π

eikr

r2
(1− ikr)

ˆ
d3x′J (x′) (r̂ · x′)

+
µ0

4π

eikr

r3

(
1− ikr − 1

2
k2r2

) ˆ
d3x′J (x′) (r̂ · x′)

2
+ · · ·

3 Electric dipole radiation
The dominant term in the multipole expansion of A (x) is

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′)

From the continuity equation,

0 =
∂ρ

∂t
+∇ · J

= −iωρ (x) +∇ · J

and a cute trick. Since the current vanishes at infinity, we may write a vanishing total divergence of xjJ (x′):
ˆ

d3x′∇ ·
(
x′
jJ (x′)

)
=

ˆ
d2x′r̂ ·

(
x′
jJ (x′)

)
= 0
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Then

0 =

ˆ
d3x′∇

′
·
(
x′
jJ (x′)

)
=

∑
i

ˆ
d3x′∇

′

i

(
x′
jJi (x

′)
)

=
∑
i

ˆ
d3x′

(
∇

′

ix
′
jJi (x

′) + x′
j∇

′

iJi (x
′)
)

=
∑
i

ˆ
d3x′

(
δijJi (x

′) + x′
j∇

′

iJi (x
′)
)

=

ˆ
d3x′

(
Jj (x

′) + x′
j∇

′
· J
)

and we have ˆ
d3x′Jj (x

′) = −
ˆ

d3x′ x′
j∇

′
· J

= −iω

ˆ
d3x′ x′

jρ (x
′)

This integral is the electric dipole moment,

p =

ˆ
d3x′ x′ρ (x′)

and the vector potential is

A (x) = − iωµ0

4π

eikr

r
p

The magnetic field is the curl of this,

H (x) =
1

µ0
∇×A

= − iω

4π
∇×

(
eikr

r
p

)
= − iω

4π

(
∇eikr

r
× p

)
= − iω

4π

∂

∂r

(
eikr

r

)
r̂× p

= − iω

4π

(
ikeikr

r
− eikr

r2

)
r̂× p

=
ωk

4π

(
1− 1

ikr

)
eikr

r
r̂× p

=
k2c

4π

(
1− 1

ikr

)
eikr

r
r̂× p

and is therefore transverse to the radial direction. For the electric field,

E =
iZ

k
∇×H

=
iZkc

4π
∇×

((
1− 1

ikr

)
eikr

r
r̂× p

)
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Using
∇× (a× b) = a (∇ · b)− b (∇ · a) + (b ·∇)a− (a ·∇)b

this becomes

E =
iZkc

4π

[
(p ·∇)

[(
1− 1

ikr

)
eikr

r
r̂

]
− p

(
∇ ·

[(
1− 1

ikr

)
eikr

r
r̂

])]
We easily compute the first term in the brackets using the identity

(a ·∇) (r̂f (r)) =
f (r)

r
[a− (a · r̂) r̂] + (a · r̂) r̂∂f

∂r

Thus, the first term is

(p ·∇)

[(
1− 1

ikr

)
eikr

r
r̂

]
=

f (r)

r
[p− (p · r̂) r̂] + (p · r̂) r̂∂f

∂r

=
1

r

(
1− 1

ikr

)
eikr

r
[p− (p · r̂) r̂] + (p · r̂) r̂

[
1

ikr2
eikr

r
−
(
1− 1

ikr

)
eikr

r2
+

(
1− 1

ikr

)
ikeikr

r

]
=

eikr

r

[(
1

r
− 1

ikr2

)
[p− (p · r̂) r̂] + (p · r̂) r̂

(
ik − 2

r
+

2

ikr2

)]
For the second term, we use

∇ · (r̂f (r)) =
2

r
f +

∂f

∂r

so that

∇ ·
[(

1− 1

ikr

)
eikr

r
r̂

]
=

2

r

(
1− 1

ikr

)
eikr

r
+

∂

∂r

((
1− 1

ikr

)
eikr

r

)
=

2

r

(
1− 1

ikr

)
eikr

r
+

1

ikr2
eikr

r
−
(
1− 1

ikr

)
eikr

r2
+

(
1− 1

ikr

)
ikeikr

r

=
eikr

r

(
2

r
− 2

ikr2
+

1

ikr2
− 1

r
+

1

ikr2
+ ik − 1

r

)
=

ikeikr

r

Combining these results, and using Zc =
√

µ0

ϵ0

√
1

µ0ϵ0
= 1

ϵ0
,

E =
iZkc

4π

[
eikr

r

[(
1

r
− 1

ikr2

)
[p− (p · r̂) r̂] + (p · r̂) r̂

(
ik − 2

r
+

2

ikr2

)]
− p

(
ikeikr

r

)]
=

iZkc

4π

eikr

r

[(
1

r
− 1

ikr2

)
[p− (p · r̂) r̂]−

(
2

r
− 2

ikr2

)
(p · r̂) r̂− ik (p− (p · r̂) r̂)

]
=

iZkc

4π

eikr

r

[(
−ik +

1

r

(
1− 1

ikr

))
(p− (p · r̂) r̂)− 2

r

(
1− 1

ikr

)
(p · r̂) r̂

]
=

iZkc

4π

eikr

r

[
−ik (p− (p · r̂) r̂) + 1

r

(
1− 1

ikr

)
(p− (p · r̂) r̂)− 2

r

(
1− 1

ikr

)
(p · r̂) r̂

]
=

1

4πϵ0

eikr

r

[
k2 (p− (p · r̂) r̂) + ik

r

(
1− 1

ikr

)
(p− 3 (p · r̂) r̂)

]
Finally, noting that

r̂× (p× r̂) = p− (p · r̂) r̂
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we write the elecrtric field as

E (x, t) =
1

4πϵ0

eikr−iωt

r

[(
k2 +

ik

r
− 1

r2

)
r̂× (p× r̂)−

(
2ik

r
− 2

r2

)
(p · r̂) r̂

]
where the first term is transverse and the second is not.

The electric and magnetic fields for an oscillating dipole field are therefore,

H (x, t) =
k2c

4π

(
1− 1

ikr

)
eikr−iωt

r
r̂× p

E (x, t) =
1

4πϵ0

eikr−iωt

r

[
1

r2
(
k2r2 + ikr − 1

)
r̂× (p× r̂)− 2

r2
(ikr − 1) (p · r̂) r̂

]
In the radiation zone, kr ≫ 1, these simplify to

H (x, t) =
k2c

4π

eikr−iωt

r
r̂× p

E (x, t) =
k2

4πϵ0

eikr−iωt

r
r̂× (p× r̂)

= Z0H× r̂

while in the near zone, kr ≪ 1,

H (x, t) =
ikc

4π

1

r2
e−iωtr̂× p

=
ikr

Z

1

4πϵ0r3
e−iωtr̂× p

E (x, t) =
1

4πϵ0r3
e−iωt (3 (p · r̂) r̂− p)

Notice that in the near zone, the electric field is just e−iωt times a static dipole field, while

H =
kr

Z

1

4πϵ0

p

r3

E =
1

4πϵ0

p

r3
|3 (p̂ · r̂) r̂− p̂|

so that H ≪ E, while the spatial oscillation is negligible. In the far zone, by contrast, there is a transverse
wave travelling radially outward with the electric and magnetic fields comparable.

4 Electric quadrupole and magnetic dipole radiation
To go to higher multipoles, we generalize our expression for multipole integrals of the current.

4.1 The trick, in general
Does the trick for expressing the moments of the current work for higher multipoles? Not quite! We show
here that two distinct distributions are required: the charge density and the magnetic moment density.

First, we know how to find the zeroth moment of the current in terms of the first moment of the charge
density,

ˆ
d3x′Jj (x

′) = −iω

ˆ
d3x′ x′

jρ (x
′)
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Now, suppose we know the first n− 1 moments of a current distribution in terms of moments of the charge
density, and want to find the nth,

jk1...kn ≡
ˆ

d3x xk1 . . . xknJ (x)

Then consider the (vanishing) integral of a total divergence,

0 =

ˆ
d3x∇ ·

(
xk1xk2 . . . xkn+1J (x)

)
=

∑
i

ˆ
d3x∇i

(
xk1xk2 . . . xkn+1Ji

)
=

∑
i

ˆ
d3x

[(
δik1xk2 . . . xkn+1 + xk1δik2 . . . xkn+1 + . . .+ xk1xk2 . . . δikn+1

)
Ji + xk1xk2 . . . xkn+1∇iJi

]
=

ˆ
d3x

[(
Jk1xk2 . . . xkn+1 + xk1Jk2 . . . xkn+1 + . . .+ xk1xk2 . . . Jkn+1

)
+ iωxk1xk2 . . . xkn+1ρ

]
Each of the first n+ 1 integrals, ˆ

d3x Jk1xk2 . . . xkn+1

is a component of jk1...kn , since there are n factors of the coordinates, xk2 . . . xkn+1 . The problem is that
we have expressed the (n+ 1)

st moment of the charge density in terms of the symmetrized moments of the
current. We cannot solve for jk1...kn unless we also know the antisymmetric parts. Since the products of the
coordinates are necessarily symmetric (i.e., xk2 . . . xkn+1 is the same regardless of the order of the ki indices),
the only antisymmetric piece is ˆ

d3x (Jixk − Jkxi)xk2 . . . xkn

This does not vanish, but it can be expressed in terms of the magnetic moment density. Recall

M =
1

2
x× J

Mi =
1

2

∑
j,k

εijkxjJk

∑
i

Miεimn =
1

2

∑
i,j,k

εimnεijkxjJk

=
1

2

∑
j,k

(δmjδnk − δmkδnj)xjJk

=
1

2
(xmJn − xnJm)

xmJn = xnJm + 2
∑
i

Miεimn

Consider the second term in our expression for the moments,ˆ
d3x

(
xk1Jk2 . . . xkn+1

)
We can now turn it into the same form as the first term,

ˆ
d3x

(
xk1Jk2 . . . xkn+1

)
=

ˆ
d3x

((
xk2Jk1 + 2

∑
i

Miεik1k2

)
. . . xkn+1

)

=

ˆ
d3xJk1xk2 . . . xkn+1 + 2

∑
i

ˆ
d3xMiεik1k2xk3 . . . xkn+1

10



The first term on the right is now the same as the first term in our expression. Repeating this for each of
the n+ 1 terms involving Jk gives

0 =

ˆ
d3x (n+ 1) Jk1xk2 . . . xkn+1 + 2

∑
i

ˆ
d3xMiεik1k2xk3 . . . xkn+1 + . . .+ 2

∑
i

ˆ
d3xMiεik1kn+1xk2xk3 . . . xkn+1 + iω

ˆ
d3xxk1xk2 . . . xkn+1ρ

and therefore,

jk2...kn+1 = − 2

n+ 1

∑
i

ˆ
d3x

[
Miεik1k2xk3 . . . xkn+1 + . . .+Miεik1kn+1xk2xk3 . . . xkn+1

]
− iω

n+ 1
pk1...kn+1

jk2...kn+1 = − 2n!

n+ 1

∑
i

εik1(k2
mik3...kn+1) −

iω

n+ 1
pk1...kn+1

where
mk1...kn =

ˆ
d3xMxk1 . . . xkn

are the higher magnetic moments. The parentheses notation means symmetrization. For example,

T(ijk) ≡
1

3!
(Tijk + Tjki + Tkij + Tjik + Tkji + Tikj)

This shows that there are two types of moments that we will encounter: electric multipole moments built
from the charge density, and magnetic multipole moments built from the magnetic moment density. We see
this explicitly in the calculation of the electric quadrupole term of our general expansion.

4.2 Electric quadrupole and magnetic dipole radiation
If the electric dipole term is absent, the dominant term in our expansion of the vector potential is

A (x) =
µ0

4π

eikr

r

(
1

r
− ik

)ˆ
d3x′J (x′) (x̂ · x′)

Now we need the next higher moment of the current,
ˆ

d3x′J (x′) (r̂ · x′)

We have seen that we can express the nth moment of the charge distribution in terms of symmetrized
(n− 1)

st moments of the current. In order to get the symmetrized moments of J we may use a vector
identity. Starting with the magnetic moment density

M =
1

2
(x× J)

we take a second curl

r̂×M =
1

2
r̂× (x′ × J)

=
1

2
(x′ (r̂ · J)− J (r̂ · x′))

so that
J (r̂ · x′) = x′ (r̂ · J)− 2r̂×M

In components, this is ∑
k

r̂k (Jix
′
k) =

∑
k

r̂kx
′
iJk − 2

∑
j,k

εijkr̂jMk

11



Therefore, the ith component of the current moment is[ˆ
d3x′J (x′) (r̂ · x′)

]
i

=

ˆ
d3x′

(∑
k

r̂kJix
′
k

)

=

ˆ
d3x′

(
1

2

∑
k

r̂kJix
′
k +

1

2

∑
k

r̂kJix
′
k

)

=

ˆ
d3x′

1

2

∑
k

r̂kJix
′
k +

1

2

∑
k

r̂kx
′
iJk − 2

∑
j,k

εijkr̂jMk


=

ˆ
d3x′

∑
k

r̂k
1

2
(Jix

′
k + x′

iJk)−
∑
j,k

εijkr̂jMk


= − iω

2

∑
k

r̂k

ˆ
d3x′ (x′

ix
′
kρ) +

ˆ
d3x′

∑
j,k

εijkr̂kMj

=
∑
k

r̂k

ˆ
d3x′

∑
j

εijkMj −
iω

2

ˆ
d3x′ (x′

ix
′
kρ)


Notice that

fi =
∑
k

r̂k

ˆ
d3x′ (r′2ρδik)

= r̂i

ˆ
d3x′ r′2ρ

has vanishing curl,

∇× f = (∇× r̂)

ˆ
d3x′ r′2ρ

= 0

This means that this term may be added to the vector potential without affecting the fields (Jackson never
mentions this). This allows us to define the quadrupole moment of the charge distribution as the traceless
matrix

Qik =

ˆ
d3x′ (3x′

ix
′
k − δikr

′2) ρ (x′)∑
k

Qkk = 0

without changing the fields. Then, with the magnetic dipole moment equal to

m =

ˆ
d3xM

and setting
[Q (r̂)]i ≡

∑
k

r̂kQik

the vector potential becomes

A (x) =
µ0

4π

eikr

r

(
1

r
− ik

)ˆ
d3x′J (x′) (r̂ · x′)

12



=
µ0

4π

ikeikr

r

(
1− 1

ikr

)(
r̂×m+

iω

6
Q (r̂)

)
=

µ0

4π

ikeikr

r

(
1− 1

ikr

)(
iω

6
Q (r̂) + r̂×m

)
For comparison, here is the divergence trick applied to the present case. Consider

0 =

ˆ
d3x∇ · (xjxkJ (x))

=
∑
i

ˆ
d3x∇i (xjxkJi (x))

=
∑
i

ˆ
d3x [(δijxk + δikxj)Ji + xjxk∇iJi]

=

ˆ
d3x [Jjxk + Jkxj + iωxjxkρ]

=

ˆ
d3x [2Jjxk + (Jkxj − Jjxk) + iωxjxkρ]

= 2

ˆ
d3x Jjxk +

ˆ
d3x (Jkxj − Jjxk) + iω

ˆ
d3x ρ xjxk

so that finally, ˆ
d3x Jjxk = −1

2

ˆ
d3x (Jkxj − Jjxk)−

iω

2

ˆ
d3x ρ xjxk

Now using the definition of the magnetic moment density,

M =
1

2
(x× J)

and noting that

[r̂×M]i =
1

2

∑
jk

εijkr̂j (x
′ × J)k

=
1

2

∑
jkmn

εijkεkmnr̂jx
′
mJn

=
1

2

∑
jmn

(δimδjn − δinδjm) r̂jx
′
mJn

=
1

2

∑
j

r̂j
(
x′
iJj − x′

jJi
)

Returning to the expression for the vector potential

A (x) =
µ0

4π

eikr

r

(
1

r
− ik

)ˆ
d3x′J (x′) (r̂ · x′)

Ai =
µ0

4π

eikr

r

(
1

r
− ik

)∑
k

r̂k

ˆ
d3x′Jix

′
k

=
µ0

4π

eikr

r

(
1

r
− ik

)∑
k

r̂k

(
−1

2

ˆ
d3x′ (Jkx

′
i − Jix

′
k)−

iω

2

ˆ
d3x′ ρ x′

ix
′
k

)

=
µ0

4π

eikr

r

(
1

r
− ik

)(
−
ˆ

d3x′ ([r̂×M]i)−
iω

2

∑
k

r̂k

ˆ
d3x′ ρ x′

ix
′
k

)

13



A (x) =
µ0

4π

ikeikr

r

(
1− 1

ikr

)(
iω

6
Q (r̂) + r̂×m

)
so the result is just as above.

4.2.1 Magnetic dipole

The fields are now found in the usual way. The magnetic dipole potential is

A (x) =
µ0

4π

ikeikr

r
r̂×m

Notice that the magnetic field for the electric dipole had exactly this form,

iµ0

kc
He (x, t) =

µ0

4π

ikeikr−iωt

r
r̂× p

once we replace p −→ m. Since the electric field in that case was given by Ee (x, t) =
iZ0

k ∇ ×He, we can
write the curl of A immediately. We have

Hm (x, t) =
1

µ0
∇×Am (x)

=
1

µ0
∇×

(
iµ0

kc
He (x, t)

∣∣∣∣
p−→m

)

=
i

kc

k

iZ0
Ee (x, t)|p−→m

=
1

cZ

1

4πε0

eikr−iωt

r

[
k2r̂× (m× r̂) +

ik

r

(
1− 1

ikr

)
(m− 3 (m · r̂) r̂)

]
=

1

4π

eikr−iωt

r

[
k2r̂× (m× r̂) +

ik

r

(
1− 1

ikr

)
(m− 3 (m · r̂) r̂)

]
We can resort to this sort of magic again, because we know that this form of Ee (x, t) was achieved by taking
the curl of He, and the Maxwell equations for harmonic sources tell us that

iωBm = ∇×Em

iω∇×

(
iµ0

kc
He (x, t)

∣∣∣∣
p−→m

)
= ∇×Em

−µ0He (x, t)|p−→m = Em

Notice that dropping the curl on both sides is not quite allowed, since the right and left sides could differ by
a gradient, but the answer here is correct. The electric field for magnetic dipole radiation is correctly given
by

Em = −µ0He (x, t)|p−→m

= −µ0

(
k2c

4π

(
1− 1

ikr

)
eikr−iωt

r
r̂× p

)∣∣∣∣
p−→m

= −Z0

4π
k2
(
1− 1

ikr

)
eikr−iωt

r
r̂×m

This gives the magnetic dipole fields as

H =
1

4π

eikr−iωt

r

[
k2r̂× (m× r̂) +

ik

r

(
1− 1

ikr

)
(m− 3 (m · r̂) r̂)

]
E = −Z0

4π
k2
(
1− 1

ikr

)
eikr−iωt

r
r̂×m
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in complete analogy to the electric dipole field, but with magnetic and electric parts interchanged.
In the radiation zone, these become

H =
1

4π
k2

eikr−iωt

r
[r̂× (m× r̂)]

E = −Z0

4π
k2

eikr−iωt

r
r̂×m

so they are once again transverse and comparable in magnitude. In the near zone,

H =
e−iωt

4πr3
(3 (m · r̂) r̂−m)

E = − iZ0kr

4π

e−iωt

r3
r̂×m

so the electric field is much weaker than the magnetic, which takes the form of a dipole.

4.2.2 Electric quadrupole

For the quadrupole fields, we begin with the quadrupole piece of the vector potential

A (x) =
iωµ0

24π

ikeikr

r

(
1− 1

ikr

)
Q (r̂)

where writing
[Q (r̂)]i ≡

∑
k

r̂kQik

allows us to write the potential in vector form. The magnetic field is then

H (x) =
1

µ0
∇×A (x)

Keeping only terms of order 1
r , this gives

H (x) =
1

µ0
∇×

[
iωµ0

24π

ikeikr

r
Q (r̂)

]
=

1

µ0

[
−iωk2µ0

24π

eikr

r
r̂×Q (r̂)

]
=

−ick3

24π

eikr

r
r̂×Q (r̂)

since the only derivative term that does not increase the power of 1
r is

[
iωµ0

24π
ik
r

(
∇eikr

)
×Q (r̂)

]
. The electric

field is then

E (x) = Z0H× r̂

= Z0

(
−ick3

24π

eikr

r
r̂×Q (r̂)

)
× r̂

= − ik3

24πϵ0

eikr

r
[r̂×Q (r̂)]× r̂

The fields in the radiation zone are therefore

H (x, t) = − ik3

24πϵ0Z

eikr−iωt

r
r̂×Q (r̂)

E (x, t) = − ik3

24πϵ0

eikr−iωt

r
[r̂×Q (r̂)]× r̂
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Near field?
With

A (x) =
iωµ0

24π

ikeikr

r

(
1− 1

ikr

)
Q (r̂)

the magnetic field is then

H (x) =
1

µ0
∇×A (x)

=
1

µ0
∇×

(
iωµ0

24π

ikeikr

r

(
1− 1

ikr

)
Q (r̂)

)
Hi (x) = − k2c

24π
εijk

∂

∂xj

(
eikr

r

(
1− 1

ikr

)
Qk (r̂)

)
= − k2c

24π

∑
j,k,m

Qkmεijk
∂

∂xj

(
eikr

r

(
1− 1

ikr

)
r̂m

)

= − k2c

24π

∑
j,k,m

Qkmεijk

(
− 1

r2
r̂je

ikr

(
1− 1

ikr

)
r̂m +

ikr̂je
ikr

r

(
1− 1

ikr

)
r̂m +

eikr

r

1

ikr2
r̂j r̂m +

eikr

r

(
1− 1

ikr

)(
1

r
δjm − 1

r
r̂j r̂m

))

= − k2c

24π

eikr

r2

∑
j,k,m

Qkmεijk

((
ikr − 2 +

2

ikr

)
r̂j r̂m +

(
1− 1

ikr

)
(δjm − r̂j r̂m)

)

= − k2c

24π

eikr

r2

(ikr − 2 +
2

ikr

)
[r̂×Q]i +

(
1− 1

ikr

)∑
j,k

Qkjεijk − [r̂×Q]i


= − k2c

24π

eikr

r2

(
ikr − 3 +

3

ikr

)
[r̂×Q]i

that is,

H (x) = − k2

24πϵ0Z

eikr

r2

(
ikr − 3 +

3

ikr

)
r̂×Q

with the electric field given by

E =
iZ

k
∇×H

= − ik

24πϵ0

∂

∂r

(
eikr

r2

(
ikr − 3 +

3

ikr

))
r̂× (r̂×Q)

− ik

24πϵ0

(
eikr

r2

(
ikr − 3 +

3

ikr

)
∇× (r̂×Q)

)
= − ik

24πϵ0

eikr

r3

(
−k2r2 − 4ikr + 9− 9

ikr

)
r̂× (r̂×Q)

+
ik

24πϵ0

(
eikr

r3

(
ikr − 3 +

3

ikr

)
((Q · r̂) r̂+ 2Q)

)
= − ik

24πϵ0

eikr

r3

(
−k2r2 − 4ikr + 9− 9

ikr

)
((Q · r̂) r̂−Q)

+
ik

24πϵ0

(
eikr

r3

(
ikr − 3 +

3

ikr

)
((Q · r̂) r̂+ 2Q)

)
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= − ik

24πϵ0

eikr

r3

(
−k2r2 − 5ikr + 12− 12

ikr

)
(Q · r̂) r̂

+
ik

24πϵ0

eikr

r3

(
−k2r2 − 2ikr + 3− 3

ikr

)
Q

where we use

[∇× (r̂×Q)]i =
∑
jklm

εijk∇j

(
εklm

rl
r
Qmn

rn
r

)
=

∑
jklm

(δilδjm − δimδjl)Qmn

(
rlδjn
r2

+
δljrn
r2

− rlrnrj
r4

)
= Qnn

ri
r2

+
1

r
Qi −Qj r̂j

r̂i
r
− 3Qi

1

r

= −1

r
((Q · r̂) r̂+ 2Q)

In the radiation zone this is dominated by the first term,

H (x) = − ik3

24πϵ0Z

eikr

r
r̂×Q

E (x) = − ik3

24πϵ0

eikr

r
(Q− (Q · r̂) r̂)

=
ik3

24πϵ0

eikr

r
r̂× (r̂×Q (r̂))

and in the near zone by

H (x) =
ikr

8πϵ0Z

eikr

r4
r̂×Q

E (x) = − 1

8πϵ0

eikr

r4
(Q− 4 (Q · r̂) r̂)

5 Radiated power
The energy per unit area carried by an electromagnetic wave is given by the Poynting vector,

S = E×H

For a plane wave, we have

E = E0 cos (k · x− ωt)

H =
1

µ

√
µε

1

k
k×E0 cos (k · x− ωt)

So

S = E×H

= E0 cos (k · x− ωt)×
(
1

µ

√
µε

1

k
k×E0 cos (k · x− ωt)

)
=

√
ε

µ

1

k
E0 × (k×E0) cos

2 (k · x− ωt)

=

√
ε

µ

1

k
E2

0k cos2 (k · x− ωt)
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with real part

S =

√
ε

µ

1

k
E2

0k cos2 (k · x− ωt)

with time average

S =

(
1

2

√
ε

µ
E2

0

)
k̂

For a complex representation of the wave,

E = E0e
i(k·x−ωt)

H =
1

µ

√
µε

1

k
k×E0e

i(k·x−ωt)

we may write the same quantity as

1

2
Re (E×H∗) =

1

2
Re

(
E0e

i(k·x−ωt) × 1

µ

√
µεk̂×E∗

0e
−i(k·x−ωt)

)
=

1

2

√
ε

µ
|E0|2 k̂

so the time-averaged energy flow per unit area per unit time is

S =
1

2
Re (E×H∗)

Now consider the average power carried off by electric dipole, electric quadrupole, and magnetic dipole
radiation.

5.1 Electric dipole
The radiation zone fields were found above to be

H (x, t) =
k2c

4π

eikr−iωt

r
r̂× p

E (x, t) =
k2

4πε0

eikr−iωt

r
r̂× (p× r̂)

so that

dP

dA
= r̂ · S

=
1

2
Re (r̂ · (E×H∗))

=
1

2
Re

(
k2

4πε0

1

r
r̂ ·
(
[r̂× (p× r̂)]× k2c

4π

1

r
[r̂× p]

))
=

ck4

32π2ε0

1

r2
|p|2 sin2 θ

=
c2k4

√
µ0ε0

32π2ε0

1

r2
|p|2 sin2 θ

=
c2Z0

32π2

1

r2
k4 |p|2 sin2 θ

18



This is the power per unit area. Since the area element at large distances is dA = r2dΩ, where Ω is the solid
angle, we may write the differential power radiated per unit solid angle using

dP

dA
=

1

r2
dP

dΩ

so that

dP

dΩ
=

c2Z0

32π2
k4 |p|2 sin2 θ

5.2 Magnetic dipole
The radiation zone fields for magnetic dipole radiation are

H (x, t) =
k2

4π

eikr−iωt

r
r̂× (m× r̂)

E (x, t) = −Z0k
2

4π

eikr−iωt

r
r̂×m

so the result is the same as for the electric dipole with the substitution p −→ m/c,

dP

dΩ
=

Z0

32π2
k4 |m|2 sin2 θ

5.3 Electric quadrupole moment
For electric quadrupole radiation the fields are given by

H (x, t) =
−ick3

24π

eikr

r
r̂×Q (r̂)

E (x, t) = − ik3

24πε0

eikr

r
[r̂×Q (r̂)]× r̂

giving an average power per unit solid angle of

dP

dΩ
=

r2

2
|Re (E×H∗)|

=
r2

2

∣∣∣∣Re

[(
− ik3

24πε0

eikr

r
[r̂×Q (r̂)]× r̂

)
×
(
ick3

24π

e−ikr

r
r̂×Q (r̂)

)]∣∣∣∣
=

1

2

k3

24πε0

ck3

24π
|([r̂×Q (r̂)]× r̂)× (r̂×Q (r̂))|

=
ck6

1152π2ε0
|([r̂×Q (r̂)]× r̂)× (r̂×Q (r̂))|

=
Z0c

2

1152π2
k6 |[r̂×Q (r̂)]× r̂|2

Notice that the power radiated by the quadrupole moment depends on k6, whereas the power radiated
by the dipole moments both go as k4. This pattern continues for higher moments.
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