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1 Galilean transformations

1.1 The invariance of Newton’s second law
Newtonian second law,

F = ma

is a 3-vector equation and is therefore valid if we make any rotation of our frame of reference. Thus, if Oij
is a rotation matrix and we rotate the force and the acceleration vectors,

F̃ i = OijO
j

ãi = Oija
j

then we have
F̃ = mã

and Newton’s second law is invariant under rotations. There are other invariances. Any change of the
coordinates x → x̃ that leaves the acceleration unchanged is also an invariance of Newton’s law. Equating
and integrating twice,

ã = a
d2x̃

dt2
=

d2x

dt2

gives
x̃ = x + x0 − v0t

The addition of a constant, x0, is called a translation and the change of velocity of the frame of reference is
called a boost. Finally, integrating the equivalence dt̃ = dt shows that we may reset the zero of time (a time
translation),

t̃ = t+ t0

The complete set of transformations is

x′i =
∑
j Oijxj Rotations

x′ = x + a Translations
t′ = t+ t0 Origin of time

x′ = x + vt Boosts (change of velocity)

There are three independent parameters describing rotations (for example, specify a direction in space by
giving two angles (θ, ϕ) then specify a third angle, ψ, of rotation around that direction). Translations can
be in the x, y or z directions, giving three more parameters. Three components for the velocity vector and
one more to specify the origin of time gives a total of 10 parameters. These 10 transformations comprise the
Galilean group. Newton’s second law is invariant under the Galilean transformations.

Notice that all of the Galilean transformations are linear. This is crucial, because the position vectors x
form a vector space, and only linear transformations preserve the linear combinations we require of vectors.
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1.2 Failure of the Galilean group for electrodynamics
The same is not true of electrodynamics. For example, in the absence of sources, we have seen that Maxwell’s
equations lead to the wave equation,

− 1

c2
∂2ψ

∂t2
+∇2ψ = 0

for the each component of the fields and the potentials. But if we perform a boost of the coordinates, this
equation is not invariant:

0 = − 1

c2
∂2

∂t̃2
ψ
(
x̃, t̃
)

+ ∇̃2ψ
(
x̃, t̃
)

= − 1

c2
∂2

∂t2
ψ (x̃, t) + ∇̃2ψ (x̃, t)

= − 1

c2
∂

∂t

(
∂

∂t
ψ (x̃, t)− dx̃

dt
· ∇̃ψ (x̃, t)

)
+∇2ψ (x, t)

= − 1

c2
∂

∂t

(
∂

∂t
ψ (x̃, t)− v0 · ∇̃ψ (x̃, t)

)
+∇2ψ (x, t)

= − 1

c2

(
∂2

∂t2
ψ (x̃, t)− 2

(
v0 · ∇̃

) ∂

∂t
ψ (x̃, t) +

(
v0 · ∇̃

)2
ψ (x̃, t)

)
+∇2ψ (x, t)

=

[
− 1

c2
∂2

∂t2
ψ (x̃, t) +∇2ψ (x, t)

]
+

2

c2

(
v0 · ∇̃

) ∂

∂t
ψ (x̃, t)−

(v0

c
· ∇̃
)2
ψ (x̃, t)

This means that there is an inherent conflict between the symmetry of Maxwell’s equations and the symmetry
of Newton’s second law. They do not change in a consistent way if we change to a moving frame of reference.
We must make a choice between modifying Maxwell’s equations or modifying Newton’s law. This is not as
drastic as it sounds, since both of the troublesome terms above are of order

(
v0
c

)2 � 1, but one must still
be modified.

Since we know that Maxwell’s equations actually predict the speed of light, it is not unreasonable to
suppose that they are valid at large velocities. On the other hand, in 1900, the laws of Newtonian experiments
had been tested only for v � c. We therefore begin by considering what set of boost transformations does
leave the wave equation invariant.

1.3 Some definitions
Rewrite the wave equation,

− 1

c2
∂2ψ

∂t2
+∇2ψ = 0

by introducing some systematic notation. Let

xα = (ct, x, y, z) for α = 0, 1, 2, 3

and define the 4× 4 object,

ηαβ ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


We write derivatives with respect to these four coordinates as

∂

∂xα
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so using the Einstein summation convention: any repeated index, one up and one down, is automatically
summed,

xα
∂

∂xα
≡

3∑
α=0

xα
∂

∂xα

This will save us from writing large numbers of
∑
s. With these definitions, the wave equation is simply

ηαβ
∂2ψ

∂xα∂xβ
= 0

The double sum involves 16 terms, but since all but four components of ηαβ are zero, only the four we need
survive. Further details of this notation is given below.

1.4 Invariance of the d’Alembertian wave equation
As with the Galilean transformation, we require our transformations to be linear,

x̃α = Λαβx
β

(Notice what this expression means. The symbol Λαβ represents a 4 × 4 constant matrix which multiplies
the components of vector xβ to give the new components. We write one index up and one down because we
want to sum over the index β, while the raised position of the free index α must be the same in all terms.
There is a rigorous meaning to the two index positions which would take us too far afield – for now, I will
simply use the correct index positions. We can always sum one raised index and one lowered one, and the
objects you are used to calling “vectors” have a raised index: the components of a 3-vector v are written as
vi.

To transform the wave equation, we use the chain rule to write the derivative with respect to the new
coordinates,

∂

∂x̃α
=
∂xβ

∂x̃α
∂

∂xβ

Letting Λ̄αβ be the inverse of Λαβ , so that ΛαµΛ̄µβ = δαβ , we have

xα = Λ̄αµx̃
µ

∂xα

∂x̃β
=

∂

∂x̃β
(
Λ̄αµx̃

µ
)

= Λ̄αµ
∂

∂x̃β
x̃µ

= Λ̄αµδ
µ
β

= Λ̄αβ

The transformation of the derivative operator is therefore

∂

∂x̃α
= Λ̄βα

∂

∂xβ

and the d’Alembertian of ψ becomes

ηαβ
∂2ψ

∂x̃α∂x̃β
= ηαβΛ̄µα

∂

∂xµ

(
Λ̄νβ

∂ψ

∂xν

)
= ηαβΛ̄µαΛ̄νβ

∂2ψ

∂xµ∂xν

We want this to hold regardless of ψ, so the matrix of partial derivatives is arbitrary. Therefore, in order for
the wave equation to be invariant, we must have

ηαβΛ̄µαΛ̄νβ = ηµν
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Exercise: Prove that this is equivalent to

ηµνΛµαΛνβ = ηαβ

We consider the special case of motion in the x-direction, so that
a b
c d

1
1



−1

1
1

1




a c
b d

1
1

 =


−1

1
1

1


so we only need to solve (

a b
c d

)(
−1

1

)(
a c
b d

)
=

(
−1

1

)
(
a b
c d

)(
−a −c
b d

)
=

(
−1

1

)
(

b2 − a2 −ac+ bd
−ac+ bd d2 − c2

)
=

(
−1

1

)
This gives us three equations,

b2 − a2 = −1

−ac+ bd = 0

d2 − c2 = 1

Solving the center equation, d = ac
b , so the third equation becomes

a2

b2
c2 − c2 = 1(

a2 − b2
)
c2 = b2

c2 = b2

Therefore,

c = ±b
d = ±a

To solve the first equation, we let b = sinh ζ, and immediately find a = cosh ζ.
Therefore,

Λ̄µα =


cosh ζ sinh ζ
sinh ζ cosh ζ

1
1


where the choice of the + sign preserves the direction of x and t. Inverting,

Λµα =


cosh ζ − sinh ζ
− sinh ζ cosh ζ

1
1


Changing the parameterization puts this in a more familar form. Let

tanh ζ =
v

c
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Then

cosh ζ =
1√

1− tanh2 ζ

=
1√

1− v2

c2

sinh ζ =
1√

1− v2

c2

v

c

Defining

γ ≡ 1√
1− v2

c2

we find the transformation of coordinates x̃α = Λαβx
β with

Λµα =


γ −γvc
−γvc γ

1
1


This gives

ct̃ = γ
(
ct− vx

c

)
x̃ = γ (x− vt)
ỹ = y

z̃ = z

which is the typical form for a relativistic boost. In the limit as c� v, we have γ ≈ 1 and this transformation
reduces to

t̃ = t

x̃ = x− vt
ỹ = y

z̃ = z

so we recover the Galilean boost and identify the parameter v with the relative velocity of the frames.

2 Special relativity from Einstein’s postulates
It is also possible to derive the reletivistic transformations from postulates.

2.1 The postulates
Special relativity is a combination of two fundamental ideas: the equivalence of inertial frames, and the
invariance of the speed of light. Inertial frames are the same in relativistic mechanics as they are in Newtonian
mechanics, i.e., frames of reference (sets of orthonormal basis vectors) in which Newton’s second law holds.
Newton’s second law

F = ma
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and as we have seen this is unchanged by the 10 distinct Galilean transformations. If we know one frame
of reference in which Newton’s second law holds, then these transformations give us a 10 parameter family
of equivalent frames of reference. Einstein’s first postulate is that these inertial frames of reference are
indistinguishable. This means that there is no such thing as absolute rest. We can say that two frames move
with constant relative velocity, but it is incorrect to say that one is at rest and the other moves.

The constancy of the speed of light, or perhaps better, the existence of a limiting velocity, is demonstrated
by the Michaelson-Morely experiment. By measuring the speed of light in two different directions, at different
times of the year so that the motion relative to the “fixed stars” is different for each, they found no effect of
the motion on the travel time of the light. Difficulties explaining this, and especially difficulties when models
were based on the disturbance travelling in a medium, lend support to the idea that light always travels in
empty space with the limiting velocity, c. Notice that this is in dramatic conflict with our normal idea of
addition of velocities. In Euclidean 3-space, if observer A moves with velocity v with respect to observer B,
and A throws a ball with velocity u, then the velocity of the ball with respect to B is u + v. But according
to this postulate of special relativity, if A shines a light beam it travels with speed c relative to both A and
B. We must combine cn̂ with v to get cn̂′, regardless of the directions of the unit vectors n̂, n̂′.

With some basic assumptions about the nature of space (specifically, spacetime is a vector space and
inertial observers move in straight lines), the two postulates are:

1. The laws of physics are the same in all inertial frames of reference

2. There is a limiting velocity to all physical phenomena, c, found experimentally to be the speed at which
light travels in vacuum (and theorized to be the speed at which gravitational waves travel in nearly
flat spacetime). This velocity is independent of inertial frame, so that if in one inertial frame an object
moves with speed c, then it moves with speed c in all inertial frames.

There are some other basic ideas we will use. Since there is strong evidence for the conservation of momentum,
with momenta additively conserved, we still need the physical arena to be a vector space, with linear
combinations of vectors giving other vectors. Also, we need a notions of straight lines and distance. We will
assume that un-forced particles travel in straight lines, along their initial direction. What constitutes the
length turns out to be the central difference between classical and relativistic models.

Another approach to these supplementary assumptions is given in problem 11.1. The assumption that
spacetime is homogeneous and isotropic places strong constraints on the allowed transformations, since the
transformation cannot depend on location or time. This approach also rules out position or time dependence
of a scale factor, Λ, (see below). However, just as the 2-dimensional surface of a sphere is isotropic and
homogeneous, there exist constant curvature 4-dimensional spaces which are homogeneous and isotropic, so
some further assumption is required.

2.2 Lorentz transformations
In order for a position, x, and time, t, to describe a vector in every frame of reference, we need to restrict
possible transformations to linear transformations. Only linear transformations preserve the additivity prop-
erties of vectors. This means that the position and time in any two frames of reference must be related by
a matrix, 

ct̃
x̃
ỹ
z̃

 =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33




ct
x
y
z


or, from above, x̃α = Λαβx

β . It is convenient to write this as a matrix equation, and simplifies the notation
if we define

x0 = ct

x1 = x
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x2 = y

x3 = z

where c is the postulated universal physical constant with units of velocity. Then we may write the trans-
formation as

x′a =

3∑
b=0

Mabxb

Now consider two inertial frames, with origins coinciding at time t = t′ = 0, in which a pulse of light is
emitted at time t = 0. Picture an expanding spherical wave with radius ct = ct′. Then we must have

ct =
√
x2 + y2 + z2

ct′ =
√
x′2 + y′2 + z′2

Write these relations as

x2 + y2 + z2 − c2t2 = 0

x′2 + y′2 + z′2 − c2t′2 = 0

Each of these must hold if the other does, and since the primed and unprimed coordinates are linearly related
to one another, they must be proportional,

x2 + y2 + z2 − c2t2 = Λ (v)
(
x′2 + y′2 + z′2 − c2t′2

)
To restrict Λ, suppose we relate x′a to a third frame, x′′a. If the relative velocity is u, then we must have

x2 + y2 + z2 − c2t2 = Λ (v)
(
x′2 + y′2 + z′2 − c2t′2

)
= Λ (v) Λ (u)

(
x′′2 + y′′2 + z′′2 − c2t′′2

)
Now choose u = −v, so that we are back to the original frame, x′′a = xa. Then we require

Λ (v) Λ (−v)

and therefore
Λ (v) = ef(v)

where f (−v) = −f (v). Conventionally, we take f (v) = 0, but there exist generalizations of relativity
involving nontrivial factors. Setting Λ = 1 is equivalent to assuming that clocks maintain the same rate as
they move from place to place. However, as long as the clock rates in different places are related by a single
multiplicative function, there is no measurable effect comparing magnitudes of times that could demonstrate
it. From here on, we will take f (v) = 0 and Λ = 1.

We therefore define
s2 ≡ x2 + y2 + z2 − c2t2

and require s′2 = s2 between any two inertial frames. This equivalence defines the Lorentz transformations.
Any linear transformation preserving the quantity s is a Lorentz transformation.

We check that for motion of O′ along the positive x-axis of O, we have

ct′ = γ (ct− βx)

x′ = γ (x− βct)
y′ = y

z′ = z
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where

γ ≡ 1√
1− β2

β ≡ v

c

Substituting into s′2 we have

s′2 = x′2 + y′2 + z′2 − c2t′2

= [γ (x− βct)]2 + y2 + z2 − [γ (ct− βx)]
2

= γ2
(
x2 − 2βxct+ β2c2t2

)
+ y2 + z2 − γ2

(
c2t2 − 2βxct+ β2x2

)
=

(
γ2 − γ2β2

)
x2 +

(
2γ2β − 2γ2β

)
xct−

(
γ2 − γ2β2

)
c2t2 + y2 + z2

and since

γ2 − γ2β2 =

(
1√

1− β2

)2 (
1− β2

)
=

1

1− β2

(
1− β2

)
= 1

we have

s′2 =
(
γ2 − γ2β2

)
x2 +

(
2γ2β − 2γ2β

)
xct−

(
γ2 − γ2β2

)
c2t2 + y2 + z2

= x2 − c2t2 + y2 + z2

= s2

proving that the transformation is a Lorentz transformation.
Notice that we can use a hyperbolic substitution to rewrite the Lorentz transformation. Define the

rapidity, ζ, by
β ≡ tanh ζ

Then

γ =
1√

1− β2

=
1√

1− tanh2 ζ

=
1√

1− sinh2 ζ
cosh2 ζ

=
cosh ζ√

cosh2 ζ − sinh2 ζ

= cosh ζ

and γβ = sinh ζ. Then, with x0 = ct, we have

x′0 = x0 cosh ζ − x1 sinh ζ

x′1 = −x0 sinh ζ + x1 cosh ζ

x′2 = x2

x′3 = x3
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The similarity to a rotation,

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

is not accidental, but will become clear when we find all Lorentz transformations.
Now suppose the velocity is in an arbitrary direction, β. We can project the position coordinate x parallel

and perpendicular to β,

x‖ =
1

β2
(β · x)β

x⊥ = x− 1

β2
(β · x)β

with x = x⊥ + x‖. The component x‖ will behave just like the x-direction in the formula above, while the
perpendicular directions x⊥ will be unchanged. The time transforms as before, so we have

ct′ = γ (ct− β · x)

x′‖ = γ
(
x‖ − βct

)
x′⊥ = x⊥

The last two may be combined as

x′ = x′‖ + x′⊥

= γ
(
x‖ − βct

)
+ x⊥

= γ

(
1

β2
(β · x)β − βct

)
+

(
x− 1

β2
(β · x)β

)
= x +

γ − 1

β2
(β · x)β − γβct

3 Spacetime
We now consider properties the 4-dimensional physical arena called spacetime. The defining properties are
that it is a 4-dimensional vector space in which the squared length of any vector (from (x1, y1z1, ct1) to
(x2, y2z2, ct2) is given by

s2 = (x2 − x1)
2

+ (y2 − y1)
2

+ (x2 − x1)
2 − c2 (t2 − t1)

2

We have seen that the value of s2 is independent of the inertial frame of reference. If the time interval
(t2 − t1)

2 is larger than the spatial separation, so that s2 < 0, we use the equivalent length

c2τ2 = c2 (t2 − t1)
2 − (x2 − x1)

2 − (y2 − y1)
2 − (x2 − x1)

2

To distinguish from 3-dimensional names, s is called the proper length and τ is called the proper time.

3.1 Contravariant Vectors
We will discuss the reasons for this notation later, but from now on, the coordinate labels will be written
raised. Thus, for Greek indices α, β, . . . ∈ (0, 1, 2, 3), we write

xα =
(
x0, x1, x2, x3

)
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where x0 = ct and xi for Latin indices i = 1, 2, 3 are the usual spatial (x, y, z). This means that use of
the Greek or Latin alphabet tells us whether an object is four or three dimensional. We know how the
coordinates xα change when we change to a different frame of reference. We now define a (contravariant)
vector, or 4-vector, to be any set of four quantities,

Aα =
(
A0, A1, A2, A3

)
=

(
A0, Ai

)
=

(
A0,A

)
that transform in the same way, i.e.,

A′0 = γ
(
A0 − β ·A

)
A′‖ = γ

(
A‖ − βA0

)
A′⊥ = γA⊥

It follows immediately that the quantity

‖Aα‖2 = −
(
A0
)2

+ A ·A

is the same in any inertial reference frame. This is the length of the 4-vector Aα. We will give alternative
notation for this later.

Now let Aα and Bα be any two 4-vectors. Their scalar product or inner product is given by

−A0B0 + A ·B

This is seen to be invariant by noting that Aα +Bα is also a vector, and writing it as

−A0B0 + A ·B =
1

2

((
−
(
A0 +B0

)2
+ (A + B) · (A + B)

)
−
(
−
(
A0
)2

+ A ·A
)
−
(
−
(
B0
)2

+ B ·B
))

=
1

2

(
‖Aα +Bα‖2 − ‖Aα‖2 − ‖Bα‖2

)
Since each of the three terms on the right is invariant (that is, unchanged by change of reference frame), the
sum is as well, so the inner product is unchanged as well.

More generally, if we write the general form of a Lorentz transformation as

x′α =

3∑
β=0

Mα
βx

β

then a 4-vector is any set of four functions Aα which transform as

A′α =

3∑
β=0

Mα
βA

β

3.2 Causality
In graphing spacetime, time is generally taken as the vertical axis. Points in spacetime are called events and
denoted P (t,x). The invariant separation between two events P (t1,x1) , P (t2,x2) is given by the invariant
interval

s2 = |x1 − x2|2 − c2 (t1 − t2)
2

or
c2τ2 = c2 (t1 − t2)

2 − |x1 − x2|2
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whichever is positive. When s2 > 0 the separation is called spacelike and when τ2 > 0 the separation is
called timelike. When s2 = c2τ2 = 0, the separation of the two events is called lightlike or null.

The minus sign between the time and space coordinates in the expression for the interval is responsibility
for causal relations in spacetime. Consider the lightlike lines from any fixed spacetime event, P . This set of
null lines is called the light cone, and its position in spacetime is agreed on by all inertial observers. As a
result, the region above these lines is agreed by all inertial observers to occur at later times (larger values
of t) and constitutes the future of P . Events lying below the lowest set of lightlike lines are agreed to have
earlier values of t, and this region is therefore called the past of P . The remaining points of spacetime are
called elsewhere.

Any object travelling from P at the speed of light must follow a null curve; objects travelling slower than
the speed of light follow curves contained inside the future light cone. Moreover, the path lies of a particle
travelling slower than the speed of light lies in the future of every event on its path. Such a path is called
the world line of the particle and is said to be a timelike curve.

Suppose P1 and P2 are two events on the world line of a particle. Then there exists a frame of reference
in which P1 and P2 occur at the same spatial location. In this frame of reference,

c2τ212 = c2 (t1 − t2)
2 − |x1 − x2|2

= c2 (t1 − t2)
2

so that in this particular frame of reference, the proper time interval equals the difference in time coordinates,
τ12 = t1 − t2.

Similarly, suppose two events P1 and P2 have spacelike separation

s212 = |x1 − x2|2 − c2 (t1 − t2)
2
> 0

Then there exists a frame of reference in which the two events occur at the same value of t, and the proper
interval becomes equal to the spatial separation of the events:

s212 = |x1 − x2|2

Now consider the world line of a particle. We know (and will demonstrate later) that such a particle
always moves with speed less than c. The proper time along its world line is the physical time for the particle.
Consider two infinitesimally separated points on the world line. Choose a frame of reference (any will do!)
and specify the position of the particle in that frame of reference by x (t), so that the infinitesimal change
in proper time is

dτ =

√
dt2 − 1

c2
dx2

= dt

√
1− 1

c2

(
dx

dt

)2

We may not integrate along the world line between any two events A,B, to find the elapsed proper time for
the particle,

τAB =

tBˆ

tA

dt

√
1− 1

c2

(
dx

dt

)2

=

tBˆ

tA

dt

√
1− v (t)

2

c2

This shows that the elapsed time for physical processes depends on the motion.
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3.3 General derivation of the Lorentz transformations (this section is optional)
We define Lorentz transformations to be those linear transformations of the spacetime coordinates xα =
(ct, x, y, z) , α = 0, 1, 2, 3 for which

ds2 = ηαβx
αxβ

= −c2t2 + x2 + y2 + z2

or equivalently, those linear transformations that preserve the wave equation. Either of these specifications
leads to the necessary and sufficient condition

ηµνΛµαΛνβ = ηαβ

We find all such transformations by first considering infinitesmal ones,

Λµα = δµα + εµα

3.3.1 Infinitesimal transformations

The defining condition becomes

ηµν (δµα + εµα)
(
δνβ + ενβ

)
= ηαβ

ηµνδ
µ
αδ
ν
β + ηµνδ

µ
αε
ν
β + ηµνε

µ
αδ
ν
β + ηµνε

µ
αε
ν
β = ηαβ

ηαβ + ηανε
ν
β + ηµβε

µ
α +O

(
ε2
)

= ηαβ

Dropping the higher order term, cancelling ηαβ , and defining

εαβ ≡ ηαµεµβ

we have
εαβ + εβα = 0

so that εαβ must be antisymmetric.
The most general antisymmetric 4× 4 matrix may be written as

0 a3 a2 a3
−a1 0 b3 −b2
−a2 −b3 0 b1
−a3 b2 −b1 0

 = a1


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

+ a2


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



+ · · ·+ b1


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


= aiKi + biJi

where

ai = (a1, a2, a3)

bi = (b1, b2, b3)

and

[K1]αβ =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


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[K2]αβ =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



[K3]αβ =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


and finally,

[J1]αβ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 =

(
0 0

0 J̃1

)

[J2]αβ =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 =

(
0 0

0 J̃2

)

[J3]αβ =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 =

(
0 0

0 J̃3

)

The 3× 3 matrices J̃i have components given by the Levi-Civita tensor,[
J̃i

]
jk

= εijk

To compute the transformations, we need to raise the first index of Ki and Ji using the inverse metric.
The three Ki change:

[K1]
α
β = ηαµ [K1]µβ

=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



=


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



[K2]αβ =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0



[K3]αβ =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0


while the Ji stay the same, that is, [Ji]

α
β has identical components to [Ji]αβ . The transformations generated

by the Ji with therefore be different from those generated by Ki.
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3.4 Finite transformations
We build up finite transformations as the limit of an infinite number of infinitesmial transformations.

3.4.1 Rotations

Consider the transformations involving Ji first. A general, infinitesimal Ji-type transformation is given by

Λ = 1 + b · J

To find a finite transformation we take the limit of many infinitesimal ones. Write the infinitesimal vector
b as b = εn where n is a unit vector. Then define the finite transformation,

Λ (n, θ) = lim
n→∞

(1 + εn · J)
n

where we take the limit in such a way that εn→ θ. To evaluate this we use the binomial theorem,

(a+ b)
n

=

n∑
k=0

(
n
k

)
an−kbk

to write

Λ (n, θ) = lim
n→∞

n∑
k=0

(
n
k

)
1n−k (εn · J)

k

= lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk (n · J)

k

Now we need powers of n · J. This is easiest if we focus on the nontrivial 3× 3 part, since

(n · J)
n

=

(
0 0

0
(
n · J̃

)n )

Since every term in Λ lies in the lower 3 × 3 corner, this transformation only affects x, y, z and not t. Let
Λ̃ (n, θ) be the 3-dim transformation,

Λ̃ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk
(
n · J̃

)k
with J̃ the 3× 3 form of the generators. We find

(
n · J̃

)2
=

 0 n3 −n2
−n3 0 n1
n2 −n1 0

2

=

 −n22 − n23 n1n2 n1n3
−n1n2 −n21 − n23 n2n3
n1n3 n2n3 −n21 − n22


=

 n1n1 n1n2 n1n3
n1n2 n2n2 n2n3
n1n3 n2n3 n3n3

− (n21 + n22 + n23
) 1

1
1


[(

n · J̃
)2]i

j

= −
(
δij − ninj

)
14



Taking one more power,

(
n · J̃

)3
=

 n1n1 n1n2 n1n3
n1n2 n2n2 n2n3
n1n3 n2n3 n3n3

−
 1

1
1

 0 n3 −n2
−n3 0 n1
n2 −n1 0


=

 n1n1 n1n2 n1n3
n1n2 n2n2 n2n3
n1n3 n2n3 n3n3

 0 n3 −n2
−n3 0 n1
n2 −n1 0

−
 0 n3 −n2
−n3 0 n1
n2 −n1 0


=

 0 0 0
0 0 0
0 0 0

− (n · J̃)
= −

(
n · J̃

)
so we have come back to the original matrix except for a sign. If we define M̃ ≡ −

(
n · J̃

)2
then we may

write all powers as (
n · J̃

)2m
= (−1)

m
M̃(

n · J̃
)2m+1

= (−1)
m

n · J̃

and the series becomes

Λ̃ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk
(
n · J̃

)k
= lim

n→∞

[
1̃ +

n∑
m=1

n!

(2m)! (n− 2m)!
ε2m

(
n · J̃

)2m
+

n∑
m=0

n!

(2m+ 1)! (n− 2m− 1)!
ε2m+1

(
n · J̃

)2m+1
]

= 1̃− M̃ + M̃ lim
n→∞

n∑
m=0

(−1)
m
n!

(2m)! (n− 2m)!
ε2m + n · J̃ lim

n→∞

n∑
m=0

(−1)
m
n!

(2m+ 1)! (n− 2m− 1)!
ε2m+1

where we add and subtract M̃ so that m starts at 0 in the first sum. Now look at the remaining sums.
Multiplying and dividing the first by n2m,

lim
n→∞

n∑
m=0

(−1)
m
n!

(2m)! (n− 2m)!
ε2m = lim

n→∞

n∑
m=0

(−1)
m
n!

(2m)!n2m (n− 2m)!
(nε)

2m

= lim
n→∞

n∑
m=0

(−1)
m
n (n− 1) (n− 2) · · · (n− 2m+ 1)

(2m)!n2m
(nε)

2m

= lim
n→∞

n∑
m=0

(−1)
m

1
(
1− 1

n

) (
1− 2

n

)
· · · (1− 2m−1

n )

(2m)!
(nε)

2m

=

∞∑
m=0

(−1)
m
θ2m

(2m)!

= cos θ

and similarly for the second

lim
n→∞

n∑
m=0

(−1)
m
n!

(2m+ 1)! (n− 2m− 1)!
ε2m+1 = lim

n→∞

n∑
m=0

(−1)
m
η2m+1

(2m+ 1)!

= sin θ
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The full transformation is therefore

Λ̃ (n, θ) = 1̃− M̃ + M̃ cos θ + n · J̃ sin θ

where
M̃ij = δij − ninj

This is a rotation through an angle θ about the n direction. To see this, consider the effect on an arbitrary
position vector, xi. In components, remembering that

[
J̃i

]
jk

= εijk,

Λ̃ijx
j =

[
δij −

(
δij − ninj

)]
xj +

(
δij − ninj

)
xj cos θ + nkε

ki
j sin θ

= ninjx
j +

(
xi − ninjxj

)
cos θ + nkε

ki
jx
j sin θ

= ninjx
j +

(
xi − ninjxj

)
cos θ − εikjnkxj sin θ

Λ̃x = n (n · x) + (x− n (n · x)) cos θ − (n× x) sin θ

Now divide x into parts parallel and perpendicular to n,

x‖ = n (n · x)

x⊥ = x− n (n · x)

and notice that n× x is perpendicular to both.

Λ̃x = x‖ + x⊥ (cos θ − 1)− (n× x⊥) sin θ

The part of x parallel to n is unaffected by the transformation, while the perpendicular part undergoes a
rotation by θ in the plane perpendicular to n

3.4.2 Boosts

Now consider the transformations generated by Ki. The basic approach is identical, with only the generators
differing. Identical steps, taking the limit of many infinitesimal transformations, lead to

Λ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk (n ·K)

k

where the limit is taken with nε → ζ where ζ is finite. The powers of n ·K again split into even and odd.
Starting with

n ·K =


0 −n1 −n2 −n3
−n1 0 0 0
−n2 0 0 0
−n3 0 0 0



(n ·K)
2

=


1 0 0 0
0 n1n1 n2n1 n3n1
0 n1n2 n2n2 n3n2
0 n1n3 n2n3 n3n3



(n ·K)
3

=


1 0 0 0
0 n1n1 n2n1 n3n1
0 n1n2 n2n2 n3n2
0 n1n3 n2n3 n3n3




0 −n1 −n2 −n3
−n1 0 0 0
−n2 0 0 0
−n3 0 0 0



=


0 −n1 −n2 −n3
−n1 0 0 0
−n2 0 0 0
−n3 0 0 0


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so in general,

(n ·K)
2m+1

= n ·K

(n ·K)
2m

=


1 0 0 0
0 n1n1 n2n1 n3n1
0 n1n2 n2n2 n3n2
0 n1n3 n2n3 n3n3

 ≡ N

Notice that there is no alternating sign now. The power series rearranges as before to give

Λ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk (n ·K)

k

= 1−N + N

∞∑
m=0

ζ2m

(2m)!
+ n ·K

∞∑
m=0

ζ2m+1

(2m+ 1)!

= 1−N + N cosh ζ + n ·K sinh ζ

If we define nα =
(
0, ni

)
and mα = (1,0) then we may write

[N]
α
β = nαnβ +mαmβ

[n ·K]
α
β = −mαnβ − nαmβ

and the Lorentz boost becomes

Λαβ = δαβ + (nαnβ +mαmβ) (cosh ζ − 1)− (mαnβ + nαmβ) sinh ζ

To see that this is a boost, let n lie in the x-direction. Then

n ·K =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



N =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and therefore

Λ (n, θ) = 1−N + N cosh ζ + n ·K sinh ζ

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


cosh ζ 0 0 0

0 cosh ζ 0 0
0 0 0 0
0 0 0 0

+


0 − sinh ζ 0 0

− sinh ζ 0 0 0
0 0 0 0
0 0 0 0



=


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1


just as we found previously as on of the transformations preserving the wave equation.
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