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Earth’s ionosphere is a plasma, but our previous solution does not include the presence of a magnetic
field. We consider a new model which shows some of the effects of a magnetic field on wave propagation.

Consider an electromagnetic wave passing through a medium with a strong, static, uniform magnetic
induction B0 in the same direction as the wave propagation. We neglect damping (due to collisions of the
particles of the medium) and we neglect the additional magnetic field produced by the movement of the
charges. Then Newton’s second law for the motion of an electron with charge −e becomes

mẍ = −eẋ×B0 − eEe−iωt

Think of the waves as a superposition of the two possible circular polarizations,

E = (ε1 ± iε2)E

Since the magnetic field lies in the direction of propagation, it is orthogonal to both polarization vectors.
Since we ignore all magnetic fields except B0, the motion of the electron stays in the plane of the wave

front. Therefore, we my set the position of the electron to be

x = (x1ε1 ± ix2ε2) e−iωt

Take a moment to understand what this expression for the position means. Expanding

x = (x1ε1 ± ix2ε2) e−iωt

= (x1ε1 ± ix2ε2) (cosωt− i sinωt)
= (x1ε1 cosωt± x2ε2 sinωt) + i (−x1ε1 sinωt± x2ε2 cosωt)

we take the real part,

Re x = x1ε1 cosωt± x2ε2 sinωt

Thus, if x1 = x2, the position vector rotates in a clockwise or counterclockwise circle. For different x1, x2,
we get an ellipse.

The equation of motion becomes

mẍ = −eẋ×B0 − eEe−iωt

−ω2m (x1ε1 ± ix2ε2) e−iωt = +iωe (x1ε1 ± ix2ε2) e−iωt ×B0 − e (ε1 ± iε2)Ee−iωt

Expanding the cross product term

iωe (x1ε1 ± ix2ε2) e−iωt ×B0 = +iωe (x1ε1 ×B0 ± ix2ε2 ×B0) e
−iωt

= +iωe (−x1ε2 ± ix2ε1)B0e
−iωt

we write the separate components

−ω2m (x1ε1) = +iωe (±ix2ε1)B0 − eε1E
−ω2m (±ix2ε2) = +iωe (−x1ε2)B0 − e (±iε2)E
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The first gives

−ω2mx1 = ∓ωex2ε1B0 − eE

x1 = ±eB0

mω
x2 +

eE

mω2

and the second

±iω2mx2 = +iωex1B0 ± ieE

x2 = ±eB0

ωm
x1 +

eE

mω2

Now substitute the first into the second to find

x2 = ±eB0

ωm

(
±eB0

mω
x2 +

eE

mω2

)
+

eE

mω2

x2 =

(
eB0

ωm

)2

x2 ±
e2B0E

m2ω3
+

eE

mω2(
1−

(
eB0

ωm

)2
)
x2 =

eE

mω2

(
1± eB0

mω

)

x2 =
eE

mω2

1± eB0

mω

1−
(
eB0

ωm

)2
Define the precession frequency,

ωB ≡
eB0

m
Then, factoring the denominator on the right, we have

x2 =
eE

mω2

1± ωB

ω(
1− ωB

ω

) (
1 + ωB

ω

)
=

eE

mω2

1

1∓ ωB

ω

=
eE

mω

1

ω ∓ ωB
The result for x1 is therefore,

x1 = ±eB0

mω
x2 +

eE

mω2

= ±ωB
ω

eE

mω

1

ω ∓ ωB
+

eE

mω2

=
eE

mω2

(
1± ωB

ω ∓ ωB

)
=

eE

mω2

(
ω ∓ ωB ± ωB
ω ∓ ωB

)
=

eE

mω

(
1

ω ∓ ωB

)
so reconstructing the full position vector,

x = (x1ε1 ± ix2ε2) e−iωt

=

(
eE

mω

(
1

ω ∓ ωB

)
ε1 ± i

eE

mω

1

ω ∓ ωB
ε2

)
e−iωt

=
e

mω

(
1

ω ∓ ωB

)
(ε1 ± iε2)Ee−iωt
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and finally,

x =
e

mω

(
1

ω ∓ ωB

)
E

Physically, what happens is that each circular polarization drives the electron position in a corresponding
circle, with the amplitude of the circle diverging if the wave is at the precession frequency of the electron.

Dielectric constant
The dielectric constant is found in the same way as for our previous model. We repeat the argument with
this new solution.

The electric dipole moment is

pmol = −ex

= − e2

mω

(
1

ω ∓ ωB

)
E

Then, since the total dipole moment per unit volume is P = Npmol = ε0χeE, the dielectric constant is

ε

ε0
= 1 + χe

= 1− Ne2

mωε0

(
1

ω ∓ ωB

)
= 1−

ω2
p

ω (ω ∓ ωB)

where we again find the plasma frequency, ω2
p = NZe2

mε0
.

Wave vector
Now find the wave vector corresponding to this dielectric constant. With µ = µ0, we have

k =
√
µεω

=

√
µ0ε0

ε

ε0
ω

=
ω

c

√
1−

ω2
P

ω (ω ∓ ωB)

Not only does this become imaginary for some frequencies, but it happens differently for the different circular
polarizations. This means that there are frequency ranges where eikx becomes a damping factor, and one
circular polarization can propagate but the other cannot.

Concretely, consider the top sign (positive helicity, or left-handed circular polarization) and suppose,
with ω > ωB ,

1− ω2
P

ω (ω − ωB)
< 0

ω (ω − ωB)− ω2
P

ω (ω − ωB)
< 0

ω2 − ωωB − ω2
P < 0
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Transitions occur when ω2 + ωωB − ω2
P = 0. This condition occurs when the frequency is

ω+ =
ωB +

√
ω2
B + 4ω2

P

2

=
ωB
2

(
1 +

√
1 +

4ω2
P

ω2
B

)

where we choose the positive value of the frequency. Below this frequency, the positive helicity (left handed)
polarization has an imaginary wave vector and therefore decays exponentially and does not propagate.

For negative helicity (right-handed) waves, the corresponding calculation gives

ω2 + ωωB − ω2
P < 0

and therefore

ω− <
ωB
2

(√
1 +

4ω2
P

ω2
B

− 1

)
as the condition for non-propagation. Clearly, ω+ > ω− so that when

ω− < ω < ω+

negative helicity waves will propagate, but not positive helicity.
An electromagnetic pulse sent up into the ionosphere will reflect if one of these conditions is met for the

appropriate polarization. Since the plasma frequency,

ωp =

√
NZe2

mε0

varies as the square root of the number density of electrons, we can measure the electron density by timing
the round trip travel time of the pulse.
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