
1 Introduction
Review of the Introduction

1. Basic laws

• Maxwell equations, integral form˛
S

D · n da =

ˆ
V

ρ d3x

˛
S

B · n da = 0

˛
C

H·dl =

ˆ
S

(
J +

∂D

∂t

)
· n d2x

˛
C

E·dl = −
ˆ
S

∂B

∂t
· n d2x

• Maxwell equations, differential form

∇ ·D = ρ

∇ ·B = 0

∇×H− ∂D

∂t
= J

∇×E +
∂B

∂t
= 0

• Continuity equation
∂ρ

∂t
+∇ · J = 0

• Lorentz force law
F = q (E + v ×B)

2. Mass of photon. The non-relativistic limit of the Klein-Gordon equation,

−∂
2ϕ

∂t2
+∇2ϕ =

m2c2

~2
ϕ

is the Schrödinger equation. The Klein-Gordon equation is a wave equa-
tion for a relativistic particle of mass m. When m = 0, the resulting
equation is

−∂
2ϕ

∂t2
+∇2ϕ = 0

This equation is satisfied by the electric potential. Therefore, it is natural
to assume that if the photon had mass, the electric potential would take the
form of the Klein-Gordon equation. Consider the Klein-Gordon equation
for a static, spherically symmetric potential. Then we have

1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
=
m2c2

~2
ϕ
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Substituting

ϕ (r) =
A

r
e−µr

we find
m2c2

~2

A

r
e−µr =

1

r2

∂

∂r

(
r2 ∂

∂r

(
A

r
e−µr

))
m2c2

~2r
e−µr =

1

r2

∂

∂r

(
r2

(
− 1

r2
e−µr − µ

r
e−µr

))
=

1

r2

∂

∂r

(
(−1− µr) e−µr

)
=

1

r2

(
−µ (−1− µr) e−µr − µe−µr

)
=

1

r
µ2e−µr

so that we have a solution if µ = mc
~ . Therefore, studies which place

limits on the photon mass assume that the electric potential takes the
form A

r e
−µr and put limits on the value of µ.

3. Linear superposition. This continues to hold in matter as long as the
medium is linear

Di =

3∑
j=1

εijEj

Hi =

3∑
j=1

µ′ijBj

4. Boundary conditions. We can use the integral form of Maxwell’s equations
to derive boundary conditions for the electric and magnetic fields. For the
first pair of surface integrals,˛

S

D · n da,
˛
S

B · n da

we imagine a cylindrical volume perpendicular to the interface between
two materials. The materials are characterized by the relationship be-
tween (D,H) and (E,B). With the cylinder piercing the boundary so
that its curved sides are infinitesimally high, δ, the finite part of the sur-
face integrals is given by the flat end caps. We therefore find

lim
δ→0

˛
S

D · n da = (D2 −D1) · nA

where A is the area of each end cap. In the same limit, the volume integral
of the charge density becomes

lim
δ→0

ˆ
V

ρ d3x = lim
δ→0

ρAδ

= σA
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where σ is the charge per unit area on the boundary surface. Therefore,
we have

(D2 −D1) · n = σ

so that the normal component ofD has a discontinuity equal to the surface
charge density, σ. The same result holds for B except there can be no
magnetic charge density, so that the normal component of the magnetic
induction B is continuous,

(B2 −B1) · n = 0

For the remaining two equations, we take the curve C to be a rectangle
with two sides, l, parallel to the surface and two short sides (of length δ)
through the surface. Then the contour integrals become

lim
δ→0

˛
C

H·dl = (H2 −H1) · l

lim
δ→0

˛
C

E·dl = (E2 −E1) · l

Because l is parallel to the surface, we get a relation for the tangential
components of the electric and magnetic fields. For the right side of these
equations, we have

lim
δ→0

ˆ
S

(
J +

∂D

∂t

)
· n d2x = lim

δ→0

ˆ
S

J · n d2x+ lim
δ→0

[(
∂D

∂t
· n
)
lδ

]
= K · l + 0

= K

where K · l = Kl is the surface current density and , and ∂D
∂t · n is finite

at the surface. For the magnetic induction term,

lim
δ→0

ˆ
S

∂B

∂t
· n d2x = lim

δ→0

(
∂B

∂t
· n
)
lδ

= 0

and we have

(H2 −H1) · l = Kl

(E2 −E1) · l = 0

Using the normal to the surface, we can write these as vector equations,

n× (H2 −H1) = K

n× (E2 −E1) = 0

We can do this because the result is independent of the orientation of the
vector l, as long as it is parallel to the surface.
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5. Idealizations: Our volume elements will be taken as microscopically large
and macroscopically small. This allows charge distributions to be taken
as continuous functions of position instead of discrete charges at isolated
locations.

6. Dirac delta function

2 Chapter 1
Before starting our discussion of Green functions, we clarify some points about
the Dirac delta function and the Laplacian of 1

r .

2.1 The Laplacian of 1
r

Consider the potential of a “point charge” q at x′

Φ =
q

4πε0

1

|x− x′|

For convenience, choose coordinates so that x′ is at the origin. Then in spherical
coordinates, the potential is proportional to 1

r . As a function, f = 1
r is defined

on the open interval (0,∞), but not at the origin. Its Laplacian is also defined
on this interval, and is quickly seen to vanish everywhere,

∇2

(
1

r

)
=

1

r2

d

dr

(
r2 d

dr

(
1

r

))
=

1

r2

d

dr
(−1)

= 0

This leads to a difficulty when we consider the divergence theorem:
ˆ

V

∇2

(
1

r

)
d3x =

˛

S

n̂·∇
(

1

r

)
d2x

since the right hand side is well-defined but the left is not. Indeed, for a sphere
of radius ε, the integral on the right becomes

˛

S

n̂·∇
(

1

r

)
d2x =

π̂

0

2πˆ

0

r̂·
(
−r̂ 1

ε2

)
ε2 sin θdθdϕ

= −4π

However, the integral on the left is undefined.
The rigorous way to handle this is to extend the function f = 1

r to a distri-
bution. A distribution is defined as the limit of a sequence of functions, giving
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an object which is only meaningful when integrated. Thus, if we define a dis-
tribution f to be the limit

f (x) ≡ lim
a→0

fa (x)

where fa (x) is a collection of functions depending on a parameter a. The
integral of the distribution is defined as the limit of the well-behaved integrals
of the series of functions

ˆ
f (x) dx ≡ lim

a→0

ˆ
fa (x) dx

and this may be perfectly finite even if f (x) is not.
With this in mind, let fa (r) = 1√

r2+a2
. This is defined for the closed interval

r ∈ [0,∞], and so is its Laplacian

∇2

(
1√

r2 + a2

)
=

1

r2

d

dr

(
r2 d

dr

1√
r2 + a2

)
=

1

r2

d

dr

(
−1

2
r2 2r

(r2 + a2)
3/2

)

= − 1

r2

d

dr

(
r3

(r2 + a2)
3/2

)

= − 1

r2

(
3r2

(r2 + a2)
3/2
− 3

2

2r4

(r2 + a2)
5/2

)

= − 3

(r2 + a2)
3/2

+
3r2

(r2 + a2)
5/2

=
3r2

(r2 + a2)
5/2
−

3
(
r2 + a2

)
(r2 + a2)

5/2

= − 3a2

(r2 + a2)
5/2

We may therefore define a distribution to extend f (r) = ∇2
(

1
r

)
by

f (r) = lim
a→0

fa (x)

= lim
a→0

(
− 3a2

(r2 + a2)
5/2

)
The integral is now well-defined:

ˆ

V

∇2

(
1

r

)
d3x ≡ lim

a→0

ˆ

V

∇2

(
1√

r2 + a2

)
d3x
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= −12π lim
a→0

a2

εˆ

0

r2dr

(r2 + a2)
5/2

= −12π lim
a→0

a2

εˆ

0

r2dr

(r2 + a2)
5/2

= −4π lim
a→0

εˆ

0

d

dr

r3

(r2 + a2)
3/2

dr

= − lim
a→0

4πε3

(ε2 + a2)
3/2

= −4π

for any finite ε. As a pleasant bonus, the divergence theorem is now satisfied as
long as we understand ∇2

(
1
r

)
to be a distribution.

2.2 Green’s Theorem
To develop a general method for solving the Poisson equation, we need a purely
mathematical result: Green’s theorem.

First, we establish a simple vector calculus identity,

∇ · (f∇g) = ∇f ·∇g + f∇2g

This relation is not hard to prove. We can just expand the del operator in
Cartesian coordinates,

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

Substituting in the left hand side,

∇ · (f∇g) =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
= î

∂

∂x
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
+ ĵ

∂

∂y
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
+k̂

∂

∂z
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
It is easiest to take the dot products first. Since î, ĵ, k̂ are independent of position
(unlike, say, r̂,θ̂, φ̂), we can bring them inside the derivative. Then we have

∇ · (f∇g) = î
∂

∂x
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
+ ĵ

∂

∂y
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
+k̂

∂

∂z
·
(
f

(
î
∂g

∂x
+ ĵ

∂g

∂y
+ k̂

∂g

∂z

))
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=
∂

∂x

(
f
∂g

∂x

)
+

∂

∂y

(
f
∂g

∂y

)
+

∂

∂z

(
f
∂g

∂z

)
=

(
∂f

∂x

∂g

∂x
+ f

∂2g

∂x2

)
+

(
∂f

∂y

∂g

∂y
+ f

∂2g

∂y2

)
+

(
∂f

∂z

∂g

∂z
+ f

∂2g

∂z2

)
=

∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y
+
∂f

∂z

∂g

∂z
+ f

(
∂2g

∂x2
+
∂2g

∂y2
+
∂2g

∂z2

)
=

∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y
+
∂f

∂z

∂g

∂z
+ f

(
∂2g

∂x2
+
∂2g

∂y2
+
∂2g

∂z2

)
= ∇f ·∇g + f∇2g

Since the dot product, gradient and Laplacian are vector operators which are
independent of coordinate system,

∇ · (f∇g) = ∇f ·∇g + f∇2g

must now hold in any coordinates, not just Cartesian.
Now, to prove Green’s first identity, we begin with the divergence theorem:ˆ

V

∇ ·A d3x =

˛
S

A·n d2x

This holds for any vector field A. Let the vector field A have the particular
form

A = f∇g

where f (x) , g (x) are any two functions of position. Substituting,
ˆ
V

∇ ·A d3x =

˛
S

A·n d2x

ˆ
V

∇ · (f∇g) d3x =

˛
S

(f∇g) ·n d2x

ˆ
V

(
∇f ·∇g + f∇2g

)
d3x =

˛
S

(f∇g) ·n d2x

where we used the relation derived above. This is Green’s first identity.
Suppose we pick some f and g. Then we know thatˆ

V

(
∇f ·∇g + f∇2g

)
d3x =

˛
S

(f∇g) ·n d2x

However, since f and g are arbitrary, we may also writeˆ
V

(
∇g ·∇f + g∇2f

)
d3x =

˛
S

(g∇f) ·n d2x

for the same f and g. Taking the difference of these two expressions (and using
the symmetry of the dot product ∇g ·∇f = ∇f ·∇g), we have

ˆ
V

(
f∇2g − g∇2f

)
d3x =

˛
S

(f∇g − g∇f) ·n d2x
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Since n is the outward unit normal to the surface S bounding the volume V

n·∇g =
∂g

∂n

is just the derivative of g normal to S. We can therefore simplify the notation
a little, ˆ

V

(
f∇2g − g∇2f

)
d3x =

˛
S

(
f
∂g

∂n
− g ∂f

∂n

)
d2x

This is Green’s theorem.

2.3 Example of the use of Green’s theorem
As an example of the use of Green’s theorem, we solve problem 10 from Jackson

Jackson 1.10: Mean value theorem

Prove that
Φ (P) =

˛
Sphere

Φ (x) d2x

in charge-free space, where the integral is over any sphere centered on the point
P.

Start wtih Green’s theorem
ˆ
V

(
f∇2g − g∇2f

)
d3x =

˛
S

(
f
∂g

∂n
− g ∂f

∂n

)
d2x

Choose f = Φ and g = 1
r . Then

ˆ
V

(
Φ∇2

(
1

r

)
− 1

r
∇2Φ

)
d3x =

˛
S

(
Φ
∂

∂n

1

r
− 1

r

∂Φ

∂n

)
d2x

Since we are in charge-free space we know that

∇2Φ = 0

and we also have
∇2

(
1

r

)
= −4πδ3 (r)

Substituting,

−4π

ˆ
V

δ3 (r) Φd3x =

˛
S

(
Φ
∂

∂n

1

r
− 1

r

∂Φ

∂n

)
d2x

Now, with the surface S a sphere centered on r = 0, we have

∂

∂n

1

r
= r̂ ·

(
r̂
∂

∂r

)
1

r
= − 1

r2
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Finally, the last term may be evaluated using Gauss’s law:
˛
S

1

r

∂Φ

∂n
d2x = −

˛
S

1

r
E · r̂d2x

= − 1

R

˛
S

E · r̂d2x

= −Qtot
ε0R

= 0

Putting this all together, and carrying out the integral over the delta function,

−4π

ˆ
V

δ3 (r) Φd3x =

˛
S

(
Φ
∂

∂n

1

r
− 1

r

∂Φ

∂n

)
d2x

−4πΦ (0) =

˛
S

(
− 1

r2

)
Φd2x

Φ (0) =
1

4πr2

˛
S

Φd2x

The right hand side is the average of the potential over the sphere, and the left
side is the potential at the center.

2.4 Uniqueness of solutions to the Poisson equation
We want to establish the uniqueness of solutions to our electrostatic problems,

∇2Φ =
ρ

ε0

for a fixed source distribution, ρ (x). However, we know that for any Φ (x)
satisfying this equation, we may add a solution, Φ′ (x), of the homogeneous
(Laplace) equation,

∇2Φ′ (x) = 0

Recall what happens with Newton’s 2nd law in mechanics. We have a second
order differential equation,

F (x, t) = m
d2x (t)

dt2

which also does not have unique solutions. It is only when we add initial condi-
tions for the position and velocity, x (0) ,v (0) that the solution becomes unique
and the motion is completely determined.

For electrostatic field theory, the situation is similar but does not involve
time evolution. Instead, we specify boundary conditions for the solution. Thus,
we solve the Poisson equation in a volume, V , then restrict the class of solutions
to those satisfying certain conditions on the boundary S of V . We now prove
that this gives a unique solution. We give a proof by two solutions satisfying
the same boundary conditions must be the same.
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Suppose we have two solutions, Φ1,Φ2, satisfying the Poisson equation on
V , and satisfying some specific condition on the boundary S. The boundary
condition may be either the value of the potential on S or the value of the
normal derivative, ∂Φ

∂n , on S. In either case, the difference of the two potentials,

U = Φ2 − Φ1

must satisfy the Poisson equation as well, but will have vanishing boundary
values, i.e., either

U (x)|x∈S = 0

or
∂U (x)

∂n

∣∣∣∣
x∈S

= 0

Now use Green’s first identity with f = g = U :
ˆ
V

(
∇f ·∇g + f∇2g

)
d3x =

˛
S

f
∂g

∂n
n d2x

ˆ
V

(
∇U ·∇U + U∇2U

)
d3x =

˛
S

U
∂U

∂n
d2x

The boundary condition for U makes the right side vanish, while on the left side
we have

∇2U = ∇2 (Φ2 − Φ1)

= ∇2Φ2 −∇2Φ1

=
1

ε0
ρ− 1

ε0
ρ

= 0

The identity reduces to
ˆ
V

(∇U ·∇U) d3x =

ˆ
V

|∇U |2 d3x = 0

This implies ∇U = 0, so that U = c. Only the value of this constant remains
unspecified, and the field, E = −∇Φ is unique.

Since the result holds for either U = 0 (Dirichlet boundary conditions) or
∂U
∂n = 0 (Neumann boundary conditions) on the boundary, it would overspecify
the solution to try to impose both conditions. It is possible, however, to specify
U = 0 on one part of S, and ∂U

∂n = 0 on the remaining part, as long as the right
side vanishes.

Notice that since the Laplace equation is just the Poisson equation with
ρ = 0, solutions to the Laplace equation with given boundary conditions are
also unique.
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2.5 Green Functions and the formal solution
We now use the results of the preceeding sections to write a complete formal
solution to the Poisson equation, satisfying given boundary conditions.

Suppose we can find a function, G (x,x′) satisfying

∇2G (x,x′) = −4πδ3 (x− x′)

and satisfying the given boundary conditions, where the Laplacian is with re-
spect to the unprimed coordinates. We may think of G (x,x′) as the solution of
the Poisson equation for a unit point charge at x′. Then a full solution may be
found by taking a superposition of such point charges. Thus, setting

Φ (x) =
1

4πε0

ˆ
G (x,x′) ρ (x′) d3x′

we see that

∇2Φ (x) =
1

4πε0
∇2

ˆ
G (x,x′) ρ (x′) d3x′

=
1

4πε0

ˆ (
∇2G (x,x′)

)
ρ (x′) d3x′

= − 1

ε0

ˆ
δ3 (x− x′) ρ (x′) d3x′

= − 1

ε0
ρ (x)

and we have a solution. The function G (x,x′) is called a Green function.

2.5.1 Example: Isolated point charge

The simplest example of a Green function is for a point charge, with the potential
vanishing at infinity. We have already shown that

∇2 1

|x− x′|
= −4πδ3 (x− x′)

we immediately have

G (x,x′) =
1

|x− x′|
+ F (x)

where F satisfies the Laplace equation, ∇2F = 0. By uniqueness, the function
F must be determined by the boundary conditions. In the present case, we
ask for G (x,x′) to vanish at x → ∞. Since the first term in G (x,x′) already
satisfies this, we require the same condition for F :

∇2F = 0

F (∞) = 0
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The argument of the preceeding section shows that F (x) = 0 is the unique
solution to this, so the Green function for an isolated point charge is G (x,x′) =

1
|x−x′| .

If we have a localized distribution of charge, ρ (x′), in empty space, the
potential vanishes at infinity and we can use this Green function to find the
potential everywhere by integrating

Φ (x) =
1

4πε0

ˆ
G (x,x′) ρ (x′) d3x′

=
1

ε0

ˆ
ρ (x′)

|x− x′|
d3x′

2.5.2 The existence of general solutions

The freedom to choose F (x) allows us to solve with more general boundary
conditions. Suppose our problem requires solutions with values Φ (S) on an
arbitrary closed boundary surface S. Then using Green’s theorem

ˆ
V

(
f∇2g − g∇2f

)
d3x =

˛
S

(
f
∂g

∂n
− g ∂f

∂n

)
d2x

with

f = Φ (x′)

g = G (x,x′)

where

∇2Φ (x) = −ρ (x)

ε0

∇2G (x,x′) = −4πδ3 (x− x′)

we findˆ
V

(
Φ (x′)∇2G (x,x′)−G (x,x′)∇2Φ (x′)

)
d3x′ =

˛
S

(
Φ (x′)

∂G (x,x′)

∂n′
−G (x,x′)

∂Φ (x′)

∂n′

)
d2x′

ˆ
V

(
−4πΦ (x′) δ3 (x− x′) +G (x,x′)

ρ (x′)

ε0

)
d3x′ =

˛
S

(
Φ (x′)

∂G (x,x′)

∂n′
−G (x,x′)

∂Φ (x′)

∂n′

)
d2x′

−4πΦ (x) +
1

ε0

ˆ
V

G (x,x′) ρ (x′) d3x′ =

˛
S

(
Φ (x′)

∂G (x,x′)

∂n′
−G (x,x′)

∂Φ (x′)

∂n′

)
d2x′

Solving for the potential we have

Φ (x) =
1

4πε0

ˆ
V

G (x,x′) ρ (x′) d3x′−
˛
S

(
Φ (x′)

∂G (x,x′)

∂n′
−G (x,x′)

∂Φ (x′)

∂n′

)
d2x′

For the case of Dirichlet boundary conditions, we require

G (x,x′)|x′∈S = 0
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This uniquely specifies G (x,x′) within S, and gives the solution

Φ (x) =
1

4πε0

ˆ
V

G (x,x′) ρ (x′) d3x′ − 1

4π

˛
S

Φ (x′)
∂G (x,x′)

∂n′
d2x′

Noting that we know both G (x,x′) and Φ (S), this gives the potential every-
where inside S.

To see that we have satisfied the boundary conditions, let x lie on S,

Φ (x)|x∈S =
1

4πε0

ˆ
V

G (x|S ,x
′) ρ (x′) d3x′ − 1

4π

˛
S

Φ (x′)
∂G (x,x′)

∂n′

∣∣∣∣
x∈S

d2x′

= − 1

4π

˛
S

Φ (x′)
∂G (x,x′)

∂n′

∣∣∣∣
x∈S

d2x′

What is this derivative? Integrate across the boundary, where both x and x′ lie
on S, ˆ

∇2G (x,x′) dn′ = −4π

ˆ
δ3 (x− x′) dn′

ˆ
∇ ·∇G (x,x′) dn′ = −4πδ2 (x− x′)

Now, since G (x,x′) is constant on S, ∇G (x,x′) is in the normal direction so
the first integral isˆ

∇ ·∇G (x,x′) dn′ =

ˆ
∂2G

∂n′2
(x,x′) dn′

=
∂G

∂n′
(x,x′)

and we have
∂G

∂n′
(x,x′) = −4πδ2 (x− x′)

Substituting into our expression for the potential,

Φ (x)|x∈S = − 1

4π

˛
S

Φ (x′)
∂G (x,x′)

∂n′

∣∣∣∣
x∈S

d2x′

=

˛
S

Φ (x′) δ2 (x− x′) d2x′

= Φ (x)|x∈S
and the boundary condition is satisfied.

2.6 Green function with spherical boundary conditions
To solve the Poisson equation with values of Φ specified on a sphere of radius
a, we need a Green function satisfying

∇2G (x,x′) = −4πδ3 (x− x′)

G (x,x′)|r=a = 0
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and we would like the result to be expressed in terms of spherical coordinates.
The second boundary may be taken either at the origin or infinity. For con-
creteness we look at the exterior case. The interior case is similar.

To begin, we note the solution for a single point charge q outside a grounded
sphere at position x′ is given by the image method as

Φ (x) =
q

4πε0

 1

|x− x′|
− a/r′∣∣∣x− ( ar′ )2 x′∣∣∣


This satisfies

∇2Φ (x) = − 1

ε0
qδ3 (x− x′)

so that rescaling,

∇2

 1

|x− x′|
− a/r′∣∣∣x− ( ar′ )2 x′∣∣∣

 = −4πδ3 (x− x′)

and we have the Green function.
Now, so express this in spherical coordinates,

x = (r, θ, ϕ)

x′ = (r′, θ′, ϕ′)

we use the expansion in spherical harmonics,

1

|x− x′|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

For the image charge we have a2

r′2 r
′ < r, so

a/r′∣∣∣x− ( ar′ )2 x′∣∣∣ =
a

r′

∞∑
l=0

l∑
m=−l

4π

2l + 1

(
a2

r′

)l
rl+1

Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

=

∞∑
l=0

l∑
m=−l

4π

2l + 1

a2l+1

rl+1r′l+1
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

Substituting, we have the Green function for boundary conditions on a sphere
and at infinity:

G (x,x′) =

∞∑
l=0

l∑
m=−l

4π

2l + 1

(
rl<
rl+1
>

− a2l+1

rl+1r′l+1

)
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)
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Now, so solve

∇2Φ (x) = − 1

ε0
ρ (x)

ΦS (x) = f (θ, ϕ)

we use our general solution,

Φ (x) =
1

4πε0

ˆ
V

G (x,x′) ρ (x′) d3x′ − 1

4π

π̂

0

2πˆ

0

f (θ′, ϕ′)

[
−∂G (r, θ, ϕ; a, θ′, ϕ′)

∂r′

]
a2 sin θ′dθ′dϕ′

The minus sign in the derivative of the Green fucntion is because we need the
outward normal from the (exterior) region of interest. Because on the boundary
sphere, r′ = a < r, this derivative has the form

∂G (r, θ, ϕ; a, θ′, ϕ′)

∂r′
=

[
∂

∂r′

∞∑
l=0

l∑
m=−l

4π

2l + 1

(
rl<
rl+1
>

− a2l+1

rl+1r′l+1

)
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

]
r′=a

=

[ ∞∑
l=0

l∑
m=−l

4π

2l + 1

∂

∂r′

(
r′l

rl+1
− a2l+1

rl+1r′l+1

)
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

]
r′=a

=

∞∑
l=0

l∑
m=−l

4π

2l + 1

(
lal−1

rl+1
+

(l + 1) a2l+1

rl+1al+2

)
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

= 4π

∞∑
l=0

l∑
m=−l

al−1

rl+1
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

2.7 Example
Let the charge density vanish and the potential at r = a be given by

ΦS (x) = A cos θ

Then the potential exterior to r = a is given by

Φ (x) = − A

4π

π̂

0

2πˆ

0

cos θ′

[
−4π

∞∑
l=0

l∑
m=−l

al−1

rl+1
Y ∗lm (θ′, ϕ′)Ylm (θ, ϕ)

]
a2 sin θ′dθ′dϕ′

= A

∞∑
l=0

l∑
m=−l

al−1

rl+1
Ylm (θ, ϕ)

π̂

0

2πˆ

0

Y ∗lm (θ′, ϕ′) cos θ′ a2 sin θ′dθ′dϕ′

To evaluate the integrals, we rewrite cos θ′ in terms of spherical harmonics,

cos θ′ =

√
4π

3
Y10 (θ′, ϕ′)
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Then

π̂

0

2πˆ

0

Y ∗lm (θ′, ϕ′) cos θ′ a2 sin θ′dθ′dϕ′ =

√
4π

3

π̂

0

2πˆ

0

Y ∗lm (θ′, ϕ′)Y10 (θ′, ϕ′) a2 sin θ′dθ′dϕ′

=

√
4π

3
δl1δm0

and we have

Φ (x) = A

∞∑
l=0

l∑
m=−l

al−1

rl+1
Ylm (θ, ϕ)

√
4π

3
δl1δm0a

2

=
Aa2

r2
cos θ

which clearly satisfies the required boundary conditions at r = a and infinity.
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