1 Introduction

Review of the Introduction

1. Basic laws

e Maxwell equations, integral form
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e Maxwell equations, differential form
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e Lorentz force law
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2. Mass of photon. The non-relativistic limit of the Klein-Gordon equation,
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is the Schrédinger equation. The Klein-Gordon equation is a wave equa-
tion for a relativistic particle of mass m. When m = 0, the resulting

equation is
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This equation is satisfied by the electric potential. Therefore, it is natural
to assume that if the photon had mass, the electric potential would take the
form of the Klein-Gordon equation. Consider the Klein-Gordon equation

for a static, spherically symmetric potential. Then we have
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Substituting
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so that we have a solution if y = 7. Therefore, studies which place

limits on the photon mass assume that the electric potential takes the
form ée”“ and put limits on the value of p.

. Linear superposition. This continues to hold in matter as long as the
medium is linear
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. Boundary conditions. We can use the integral form of Maxwell’s equations
to derive boundary conditions for the electric and magnetic fields. For the
first pair of surface integrals,
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we imagine a cylindrical volume perpendicular to the interface between
two materials. The materials are characterized by the relationship be-
tween (D,H) and (E,B). With the cylinder piercing the boundary so
that its curved sides are infinitesimally high, d, the finite part of the sur-
face integrals is given by the flat end caps. We therefore find
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where A is the area of each end cap. In the same limit, the volume integral
of the charge density becomes
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where ¢ is the charge per unit area on the boundary surface. Therefore,
we have
(D2 — Dl) ‘n=ao

so that the normal component of D has a discontinuity equal to the surface
charge density, 0. The same result holds for B except there can be no
magnetic charge density, so that the normal component of the magnetic
induction B is continuous,

(BQ—Bl)'l’l:O

For the remaining two equations, we take the curve C to be a rectangle
with two sides, 1, parallel to the surface and two short sides (of length §)
through the surface. Then the contour integrals become
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Because 1 is parallel to the surface, we get a relation for the tangential
components of the electric and magnetic fields. For the right side of these
equations, we have
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where K -1 = K1 is the surface current density and , and %—? -n is finite
at the surface. For the magnetic induction term,
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and we have
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Using the normal to the surface, we can write these as vector equations,
n X (H2 — Hl) = K
n X (E2 — El) =0

We can do this because the result is independent of the orientation of the
vector 1, as long as it is parallel to the surface.



5. Idealizations: Our volume elements will be taken as microscopically large
and macroscopically small. This allows charge distributions to be taken
as continuous functions of position instead of discrete charges at isolated
locations.

6. Dirac delta function

2 Chapter 1

We need a purely mathematical result: Green’s theorem

2.1 Green’s Theorem
First, we establish a simple vector calculus identity,
V- (fVg)=V[-Vg+ [V

This relation is not hard to prove. We can just expand the del operator in
Cartesian coordinates,

Substituting in the left hand side,
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It is easiest to take the dot products first. Since i,j, k are independent of position
(unlike, say, 7,0, ¢), we can bring them inside the derivative. Then we have
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Since the dot product, gradient and Laplacian are vector operators which are
independent of coordinate system,
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must now hold in any coordinates, not just Cartesian.
Now, to prove Green’s first identity, we begin with the divergence theorem:
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This holds for any vector field A. Let the vector field A have the particular
form

A=fVy

where f (x),g(x) are any two functions of position. Substituting,
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where we used the relation derived above. This is Green’s first identity.
Suppose we pick some f and g. Then we know that
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However, since f and g are arbitrary, we may also write
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for the same f and g. Taking the difference of these two expressions (and using
the symmetry of the dot product Vg-Vf =V f.Vg), we have
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Since n is the outward unit normal to the surface S bounding the volume V/
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is just the derivative of g normal to S. We can therefore simplify the notation

a little,
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This is Green’s theorem.

n-Vg

2.2 Example of the use of Green’s theorem

As an example of the use of Green’s theorem, we solve problem 10 from Jackson



.J1.10 Mean value theorem

Prove that
P (P) = 515 ® (z) d*x
Sphere

in charge-free space, where the integral is over any sphere centered on the point
P.

Start wtih Green’s theorem
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Now, with the surface S a sphere centered on » = 0, we have
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Finally, the last term may be evaluated using Gauss’s law:

Substituting,
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Putting this all together, and carrying out the integral over the delta function,
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The right hand side is the average of the potential over the sphere, and the left
side is the potential at the center.

2.3 Uniqueness of solutions to the Poisson equation

We want to establish the uniqueness of solutions to our electrostatic problems,
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for a fixed source distribution, p(x). However, we know that for any & (x)
satisfying this equation, we may add a solution, @’ (x), of the homogeneous
(Laplace) equation,

V20’ (x) =0
Recall what happens with Newton’s 2nd law in mechanics. We have a second
order differential equation,

d*x (t)

dt?
which also does not have unique solutions. It is only when we add initial condi-
tions for the position and velocity, x (0),v (0) that the solution becomes unique
and the motion is completely determined.

For electrostatic field theory, the situation is similar but does not involve
time evolution. Instead, we specify boundary conditions for the solution. Thus,
we solve the Poisson equation in a volume, V', then restrict the class of solutions
to those satisfying certain conditions on the boundary S of V. We now prove
that this gives a unique solution. We give a proof by two solutions satisfying
the same boundary conditions must be the same.

Suppose we have two solutions, ®1, @5, satisfying the Poisson equation on
V', and satisfying some specific condition on the boundary S. The boundary
condition may be either the value of the potential on S or the value of the
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normal derivative, g—n, on S. In either case, the difference of the two potentials,

F(x,t)=m
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must satisfy the Poisson equation as well, but will have vanishing boundary
values, i.e., either
U(x)|,es =0

or
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Now use Green’s first identity with f =g = U:
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The boundary condition for U makes the right side vanish, while on the left side
we have
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= Vo, - Vo,
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The identity reduces to
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This implies VU = 0, so that U = ¢. Only the value of this constant remains
unspecified, and the field, £ = —V ® is unique.

Since the result holds for either U = 0 (Dirichlet boundary conditions) or
g—g = 0 (Neumann boundary conditions) on the boundary, it would overspecify
the solution to try to impose both conditions. It is possible, however, to specify
U = 0 on one part of S, and g—g = 0 on the remaining part, as long as the right
side vanishes.

2.4 Green Functions and the formal solution



