## Exercises

December 7, 2015

## 1 Charge to mass ratio of the electron

Thomson first measured $\frac{e}{m}$ in 1897 using crossed electric and magnetic fields, using a method similar to the following.

A beam of electrons (with charge, $-e$, the value unknown at the time) and with unknown initial speed moves along the $x$-axis between the plates of a capacitor through a distance $L$. The capacitor produces an electric field in the negative $y$-direction, $\mathbf{E}=-E \hat{\mathbf{j}}$. After leaving the capacitor, the electron beam travels an additional distance $D$ to a screen, and its deflection $d$ in the $+y$ direction is measured.

Now, in addition to the electric field, a constant magnetic field is applied in the $z$-direction, $\mathbf{B}=B \hat{\mathbf{k}}$. The strength $B$ is adjusted until there is no deflection of the beam.

Express the charge to mass ration of the electron, $\frac{e}{m}$, in terms of $E, B, L, D$ and $d$.

## 2 Force on a square loop in a linearly increasing field

A square loop of wire of side $L$ and carrying a steady current $I$ lies in the $x y$ plane, centered at the origin. A non-uniform magnetic field in the $z$-direction is given by

$$
\mathbf{B}=b_{0} x^{2} \hat{\mathbf{k}}
$$

Find the total force on the loop.

## 3 Current density

Write the current density, J, for the following situations:

1. A uniform total current $I$ flows through a cylindrical wire. The wire has radius $R$ and lies along the $z$-axis.
2. A nonuniform total current I flows through a cylindrical wire. The wire has radius $R$ and lies along the $z$-axis, and the current density is proportional to $\rho^{2}$.
3. A wire with constant charge per unit length $\lambda$ lies along the $y$-axis and moves with velocity $\mathbf{v}=v_{0} \hat{\mathbf{j}}$.

## 4 The Biot-Savart law and Ampère's law

Use either the Biot-Savart law or Ampère's law to find the magnetic field produced by each of the following currrents or current densities:

1. A infinite slab (in the $x$ and $y$ directions) of thickness $2 a$ about $z=0$ carries a current density $\mathbf{J}=J \hat{\mathbf{i}}$. Find the magnetic field everywhere.
2. A nonuniform total current I flows through a cylindrical wire. The wire has radius $R$ and lies along the $z$-axis, and the current density is proportional to $\rho^{2}$.
3. The $x y$-plane is covered with a constant charge density $\sigma$, moving with velocity $\mathbf{v}=v_{0} \hat{\mathbf{i}}$.
4. A rectangular circuit loop of length $a$ and width $b$, carrying current $I$ is centered on the origin in the $x y$-plane. Compute the magnetic field at the origin.

## 5 Moving charged wires (Griffiths, problem 5.12)

Two infinite, parallel wires separated by a distance $d$ each carry a charge per unit length $\lambda$. The wires move relative to the lab with speed $v$ in the direction of their length. Therefore, in the lab frame of reference, they carry both current density and total charge. What is the numerical value for $v$ required for the net force on the wires to be zero?

## 6 Vector potential

Find a vector potential corresponding to a constant magnetic field, $\mathbf{B}=B_{0} \hat{\mathbf{k}}$.

## 7 Magnetic dipole moment

Find the magnetic dipole moment of a rectangular circuit loop of length $a$ and width $b$, carrying current $I$ and centered on the origin in the $x y$-plane.

