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1 The divergence of the magnetic field
Starting with the general form of the Biot-Savart law,

B (x0) =
µ0

4π

ˆ
J (x)× (x0 − x)

|x0 − x|3
d3x

we take the divergence of both sides with respect to x0,

∇x0 ·B (x0) =
µ0

4π

ˆ
∇x0 ·

[
J (x)× (x0 − x)

|x0 − x|3

]
d3x

Now we need to rearrange terms. The divergence of a cross product may be rewritten as

∇ · (A×B) = B · (∇×A)−A · (∇×B)

so we may rewrite the integrand as

∇x0
·

[
J (x)× (x0 − x)

|x0 − x|3

]
=

(x0 − x)

|x0 − x|3
[∇x0

× J (x)]− J (x) ·

[
∇x0

× x0 − x

|x0 − x|3

]

This is not nearly as bad as it looks! The first term on the right containing ∇x0
×J (x) vanishes immediately

because J (x) does not depend on the observation point x0. The second term also vanishes. To see this,
remember that x0−x

|x0−x|3
is a gradient,

x0 − x

|x0 − x|3
= −∇x0

1

|x0 − x|

an the curl of a gradient always vanishes. Therefore, the divergence of the magnetic field vanishes:

∇ ·B = 0

It turns out that this law applies even in non-steady state situations.
Integrating the divergence of B and using the divergence theorem

0 =

ˆ

V

∇ ·Bd3x

=

˛

S

B · nd2x

which shows that there is no net magnetic flux across any closed surface. In particular, there are no isolated
magnetic charges (monopoles).
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2 The equations of magnetostatics
Summarizing the magnetostatic equations, we have

∇×B = µ0J (x)

∇ ·B = 0

together with the Lorentz force law,
F = q (E+ v ×B)

These equations, together with boundary conditions, uniquely determine static magnetic fields.
The integral forms of the magnetostatic laws are therefore,

˛

C

B · dl = µ0IS

˛

S

B · nd2x = 0

These integral forms are useful for establishing the boundary conditions.

2.1 Boundary conditions
Consider an interface between two regions in which we have solutions for the magnetic fields. Using the
integral forms of the field equations, we find the boundary conditions.

First, use the integral form of Ampère’s law. Choose the curve to be a long (length L) narrow (length
l � L) rectangle with the long sides parallel to and on either side of the interface. Then, neglecting the
contribution from the short sides that pierce the interface, and choosing the loop small enough that the field
is approximately constant along the long side, Ampère’s law becomes

˛

C

B · dl = µ0IthroughS

(
Bout
‖ −Bin

‖

)
L = µ0IA

where A = Ll is the area of the loop. Setting IA = Ksurface = n̂ ·K to be the surface current through the
loop,

Bout
‖ −Bin

‖ = µ0Ksurface

If the loop is parallel to the surface current K, then the right side vanishes and the corresponding component
of the magnetic field is continuous.

The divergence equation may be evaluated over a small cylinder piercing the surface. As we have seen
before, the surface integral reduces to the normal component of the fields times the area of the circular
cross-section. Since the magnetic flux across any closed surface vanishes,

Bout⊥ −Bin
⊥ = 0

so the normal component of the magnetic field is continuous across the boundary.

2.2 The vector potential for the magnetic field
As we found for the electric field, it simplifies calculations to write the magnetic field in terms of a potential.
However, while the electric field has vanishing curl and a source for its divergence, the magnetic field has
the opposite: a source for the curl and a vanishing divergence. Therefore, we make use of the vanishing
divergence of B to write B as a curl.
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Clearly, if we set
B = ∇×A

for some vector field A, the divergence will vanish automatically because the divergence of a curl is identically
zero. Conversely, the Helmholz theorem shows that if the divergence vanishes then B may be written as a
curl of some vector. The vector field A is called the vector potential.

Writing B = ∇ ×A automatically ensures that ∇ · B = 0. We now substitute this into Ampère’s law
and use the identity for a double curl:

∇× (∇×A) = µ0J (r)

∇ (∇ ·A)−∇2A = µ0J (r)

We can eliminate the first term by using gauge freedom.
Gauge freedom arises because there is more than one allowed vector potential. If A is any vector field

satisfying B = ∇×A, and we set A′ = A+∇f for any function f , then it is also true that B = ∇×A′.
The choice of the function f is called the gauge, and this choice has no effect on the measurable magnetic
field, must like our freedom to add a constant to a scalar potential.

To use the gauge freedom to simplify the form of Ampère’s law, first suppose we have any vector potential
A0 (x) satisfying B = ∇×A0. Furthermore, it will be the case that the divergence of A0 is some function
g (x),

∇ ·A0 = g (x)

Let A be another allowed vector potential related to A0 by

A = A0 +∇f

where f is a function of our choosing. We would like to choose the function f so that the divergence of the
new potential vanishes. This requires

0 = ∇ ·A
= ∇ · (A0 +∇f)

= g +∇2f

so that f must satisfy the Poisson equation,

∇2f = −g

where g is the known divergence of our original vector potential A0. We have techniques for solving the
Poisson equation, so we can always find the required function f .

We now have a vector potential satisfying two conditions:

∇×A = B

∇ ·A = 0

Substituting into Ampère’s law now gives the simpler result,

µ0J (r) = ∇×B

= ∇× (∇×A)

= ∇ (∇ ·A)−∇2A

= −∇2A

and vanish, and Ampère’s law is

∇2A = −µ0J (r)
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This is just three copies of the Poisson equation, one for each component, so in principal we know how to
solve the equations of magnetostatics.

For fields vanishing at infinity, the solution is

A (x0) =
µ0

4π

ˆ
J (x)

|x0 − x|
d3x

For other cases, we know that the solutions are unique, once we specify boundary conditions.

3 Multipole expansion of the vector potential
Suppose we restrict the current density a curve carrying a current loop I, so that

J (x) = Iδ (x1) δ (x2) l

d3x = dx1dx2dl

where x1 and x2 are coordinates perpendicular to the direction l of the current. Then the vector potential
takes the simpler form

A (x0) =
µ0I

4π

˛

C

dl

|x0 − x|
d3x

Circuitry often takes this form, and it is sometimes useful to find the approximate magnetic field far from
the circuit in the form of a multipole expansion.

We may use the Legendre expansion

1

|x0 − x|
=

∞∑
n=0

rl

rl+1
0

Pl (cos θ)

where |x| = r and |x0| = r0 and θ is the angle between x and x0, to expand the vector potential when r0 > r.
The expansion becomes

A (x0) =
µ0I

4π

˛

C

dl

|x0 − x|
d3x

=
µ0I

4π

∞∑
n=0

˛

C

rl

rl+1
0

Pl (cos θ) dl

We consider the first two multipoles.

3.1 Magnetic monopole
The l = 0 term of the vector potential becomes

Amonopole (x0) =
µ0I

4πr0

˛

C

P0 (cos θ) dl

=
µ0I

4π

˛

C

dl

But the integral of dl around any closed loop vanishes, so the monopole contribution is always zero.
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3.2 Magnetic dipole
The magnetic dipole is usually the dominant term of the far field. It is given by

A (x0) =
µ0I

4πr20

˛

C

rP1 (cos θ) dl

=
µ0I

4πr20

˛

C

r cos θdl

=
µ0I

4πr20

˛

C

(x̂0 · x) dl

We could extract the observation direction as we did before, writing A (x0) =
µ0I
4πr20

∑
x̂0i ·

¸
C
xidl, but the

remaining integral describes a matrix, Kij =
¸
C
xidlj . With a little effort, we can express the magnetic

dipole moment as a vector.
We need an identity to get the desired vector form. Shifting to index notation, the ith component of the

integral is ˛
C

dl (x · x̂0)


i

=

3∑
j=1

˛

C

dxixj x̂0j

=

3∑
j,k=1

˛

C

[xj x̂0jδik] dxk

Thinking of Mik =
∑3
j=1 xj x̂0jδik as a vector for each value of i allows us to use Stokes’ theorem,˛

C

dl (x · x̂0)


i

=

3∑
k=1

˛

C

Mikdxk

=

˛

C

Mi · dl

=

ˆ
n̂ · (∇×Mi) d

2x

Now, recalling that the ith component of the curl may be written as

[∇× v]i =

3∑
j,k=1

εijk
∂

∂xj
vk

we compute

n̂ · (∇×Mi) =

3∑
k,l,m=1

εklmnk∇lMim

=

3∑
j,k,l,m=1

εklmnk∇l [xj x̂0jδim]

=

3∑
j,k,l,m=1

εklmnkδlj x̂0jδim
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=

3∑
k,j=1

εkjinkx̂0j

=

3∑
k,j=1

εikjnkx̂0j

= [n̂× x̂0]i

and therefore,
˛

C

dl (x · x̂0) =

ˆ
n̂× x̂0d

2x

= −x̂0 ×
ˆ

n̂d2x

The remaining integral is a vector weighted area called the vector area:

a ≡
ˆ

n̂d2x

Returning to the vector potential, we have

Adipole (x0) =
µ0I

4πr20

˛

C

(x̂0 · x) dl

=
µ0

4πr20
I

ˆ
n̂d2x× x̂0

We define the magnetic moment to be

m ≡ I
ˆ

n̂d2x = Ia

Then (dropping subscripts) the vector potential for a magnetic dipole is

Adipole (x) =
µ0

4πr2
m× x̂

3.3 Dipole moment of a current loop
For a simple current loop of radius R in the xy-plane, carrying a steady current I, the magnetic dipole
moment is

m ≡ I

ˆ
n̂d2x

= Ik̂

ˆ
d2x

= πR2Ik̂

= mk̂

The dipole contribution to the vector potential is

Adipole (x) =
µ0m

4πr2
k̂× x̂

=
µ0R

2I

4r2
sin θϕ̂
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and the (dominant) dipole contribution to the magnetic field is

Bdipole =
µ0

4π
m∇×

(
1

r2
sin θϕ̂

)
=

µ0

4π
m

(
1

r sin θ

∂

∂θ

(
1

r2
sin2 θ

)
r̂− 1

r

∂

∂r

(
1

r
sin θ

)
θ̂

)
=

µ0

4π
m

(
2

r3
cos θr̂+

1

r3
sin θθ̂

)
=

µ0m

4πr3

(
2 cos θr̂+ sin θθ̂

)
We may write this for an arbitrary dipole moment m by noticing that

2m cos θr̂ =
2

r
m · x

m sin θθ̂ = − 1

r2
x× (m× x)

= − 1

r2
(
r2m− x (m · x)

)
Therefore,

Bdipole =
µ0m

4πr3

(
2 cos θr̂+ sin θθ̂

)
=

µ0

4πr3

(
2

r
(m · x) r̂− 1

r2
(
r2m− x (m · x)

))
=

µ0

4πr3
(2 (m · x) r̂−m+ r̂ (m · r̂))

so that

Bdipole =
µ0

4πr3
(3 (m · x) r̂−m)

This holds regardless of the orientation of the dipole moment.
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4 Summary of magnetostatics
We have the following basic equations for magnetostatics.

Ampère’s law and the absence of magnetic charges:

∇×B = µ0J (r)

∇ ·B = 0

The Lorentz force law,
F = q (E+ v ×B)

The vector potential:

∇2A = −µ0J

B = ∇×A

∇ ·A = 0

Boundary conditions:

Bout
‖ −Bin

‖ = µ0Ksurface

Bout⊥ −Bin⊥ = 0

Additional useful equations include integral form of the basic field equations,
˛

C

B · dl = µ0IthroughS

˛

S

B · nd2x = 0

the Biot-Savart law
B (x0) =

µ0

4π

ˆ
J (x)× (x0 − x)

|x0 − x|3
d3x

the Biot-Savart law for circuits,

B (x0) =
µ0

4π

ˆ
Idl× (x0 − x)

|x0 − x|3

and the force on a current carrying wire in a magnetic field

F = I

ˆ
(dl×B)
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