
Ampère’s law

December 7, 2015

1 Ampère’s law
Ampère’s law relates currents to the curl of the magnetic field. To derive it, we take the curl of the Biot-Savart
law.

1.1 The curl of the magnetic field
Beginning again with the Biot-Savart law,

B (x0) =
µ0

4π

ˆ
J (x)× (x0 − x)

|x0 − x|3
d3x

we take the curle of both sides with respect to x0,

∇x0
×B (x0) =

µ0

4π

ˆ
∇x0

×

[
J (x)× (x0 − x)

|x0 − x|3

]
d3x

Now, use expression for the curl of a cross product,

∇× (A×C) = (C ·∇)A− (A ·∇)C + A (∇ ·C)−C (∇ ·A)

with A = J (x). Since the derivatives are with respect to x0 and the current density depends only on x0,
the terms with derivatives of J (x) drop out, leaving

∇× (J×C) = − (J ·∇)C + J (∇ ·C)

The vector C is now replaced by (x0−x)
|x0−x|3

,

∇×
(
J× (x0 − x)

|x0 − x|3

)
= − (J (x) ·∇x0

)
(x0 − x)

|x0 − x|3
+ J

(
∇ · (x0 − x)

|x0 − x|3

)

We need to do some work to show that integral of the first term on the right vanishes. To start, notice
that

∇x0

(x0 − x)

|x0 − x|3
= −∇x

(x0 − x)

|x0 − x|3

Then, writing the dot product as

J (x) ·∇x =

3∑
i=1

Ji
∂

∂xi
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the first term becomes

(J (x) ·∇x)
(x0 − x)

|x0 − x|3
=

3∑
i=1

Ji
∂

∂xi
(x0 − x)

|x0 − x|3

=

3∑
i=1

∂

∂xi

[
Ji

(x0 − x)

|x0 − x|3

]
− (x0 − x)

|x0 − x|3
3∑
i=1

∂Ji
∂xi

But
3∑
i=1

∂Ji
∂xi

= ∇x · J (x)

and since we are interested in static fields, the continuity equation, eq.(??), shows that the second term
vanishes. The first term is a total divergence and when we integrate it to find its contribution to the curl of
the magnetic field, we may integrate by parts. The integration is clearest if we look at one component at a
time. The integrand is

3∑
i=1

∂

∂xi

[
Ji

(x0 − x)

|x0 − x|3

]
and its k component is

3∑
i=1

∂

∂xi

[
Ji

(x0k − xk)

|x0 − x|3

]
= ∇x ·

[
(x0k − xk)

|x0 − x|3
J

]
Now use the divergence theorem,[

−µ0

4π

ˆ
(J (x) ·∇x0)

(x0 − x)

|x0 − x|3
d3x

]
k

= −µ0

4π

ˆ

V

∇x ·

[
(x0k − xk)

|x0 − x|3
J

]
d3x

= −µ0

4π

˛

S

3∑
i=1

n̂ ·

[
(x0k − xk)

|x0 − x|3
J

]
d2x

Since the volume V is arbitrary, we take it to extend beyond all of the currents into a region of empty space.
Then the current J vanishes on the entire boundary S and the integral vanishes.

This leaves us with only one term,

∇x0
×B (x0) =

µ0

4π

ˆ
J

(
∇ · (x0 − x)

|x0 − x|3

)
d3x

Again using the fact that
(x0 − x)

|x0 − x|3
= −∇ 1

|x0 − x|
the term in parenthesis becomes a Laplacian,

∇ · (x0 − x)

|x0 − x|3
= −∇2 1

|x0 − x|

Finally, we use the Poisson equation for a point charge. In general, we have

∇2V = − 1

ε0
ρ

But when ρ is the charge density for a single point charge, ρ = qδ3 (x0 − x) we have Coulomb’s law and the
potential is

V (x0) =
1

4πε0

q

|x0 − x|

2



Therefore,

∇2

(
1

4πε0

q

|x0 − x|

)
= − 1

ε0
qδ3 (x0 − x)

∇2 1

|x0 − x|
= −4πδ3 (x0 − x)

The curl of the magnetic field becomes

∇x0
×B (x0) =

µ0

4π

ˆ
J (x)

(
∇ · (x0 − x)

|x0 − x|3

)
d3x

= −µ0

4π

ˆ
J (x)∇2 1

|x0 − x|
d3x

= µ0

ˆ
J (x) δ3 (x0 − x) d3x

= µ0J (x0)

and therefore,

∇×B = µ0J

This is the static form of Ampère’s law.
Notice that Ampère’s law in this form is inconsistent when the fields are time dependent. This follows

from the full continuity equation,
∂ρ

∂t
+ ∇ · J = 0

If the charge density changes in time, ∂ρ∂t is nonzero and we must have

∇ · J 6= 0

But the divergence of the static form of Ampère’s law requires this to vanish, since we have

∇×B = µ0J (r)

∇ · (∇×B) = µ0∇ · J (r)

On the left, the divergence of a curl always vanishes, leaving us with

0 = µ0∇ · J (r) ,

a contradiction.

1.2 The integral form of Ampère’s law
The integral form of Ampère’s law is easily found. Integrating normal component of the curl over an arbitrary
surface and using Stokes’ theorem, we haveˆ

S

(∇×B) · nd2x = µ0

ˆ

S

J · nd2x

˛

C

B · dl = µ0

ˆ

S

J · nd2x

and since the integral of the current density over a surface gives the current, IS , across that surface,˛

C

B · dl = µ0IS

This expression is useful when a current distribution has sufficient symmetry.
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2 Examples

2.1 Magnetic field of a long straight wire
Above, we found the magnetic field near a long, straight wire using the Biot-Savart law. Now we solve the
same problem using Ampère’s law.

We start from the integral form of Ampère’s law,˛
B · dl = µ0Iencl

where Iencl is the total current passing through the closed contour of integration. Like a Gaussian surface,
this closed contour may be chosen arbitrarily. For the long straight wire, the magnetic field can depend only
on the distance ρ from the wire. We can get the direction from the Biot-Savart numerator, dl × (x0 − x).
Since dl is parallel to x and dl× x0 is in the ϕ̂ direction, the resultant field must be in the ϕ̂ direction.

Alternatively we may get the direction from the right-hand rule: placing the right thumb in the direction
of the current, the fingers curl in the direction of the magnetic field. For a current in the z-direction the curl
of our fingers is counter-clockwise in the xy-plane, again the ϕ̂ direction.

Therefore, we write
B = B (ρ) ϕ̂

and choose a circular path around the wire at distance ρ. Then dl = ρdϕϕ̂ and the law becomes˛
B (ρ) ϕ̂ · ρdϕϕ̂ = µ0I

B (ρ) ρ

˛
dϕ = µ0I

B (ρ) 2πρ = µ0I

Solving, we have

B =
µ0I

2πr
ϕ̂

Ampère’s law considerably simplifies the calculation.

2.2 Magnetic field of a straight wire with non-uniform current
Suppose a long straight cylindrical wire of radius R carries total current I which is distributed throughout
its cross-section so that it increases with radius as ρ2. Find the magnetic field both inside and outside the
wire.

Let the current flow in the z-direction. The current density is

J = Ar2Θ (R− ρ) k̂

where A is determined by the total current,

I =

∞̂

0

2πˆ

0

rdrdϕAr2Θ (R− r) k̂ · k̂

= 2πA

R̂

0

r3dr

= 2πA
R4

4

A =
2I

πR4
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so that

J =
2Iρ2

πR4
Θ (R− ρ) k̂

Now use Ampère’s law. Since the problem is symmetric in the z and ϕ directions, the magnitude of B
can only depend on ρ. Again, we find the direction from either the Biot-Savart law, or the right-hand rule.
Either way, we see that B must be in the ϕ-direction,

B = B (ρ) ϕ̂

Now imagine a circular loop in a plane orthogonal to the wire, lying at constant ρ, so dl = ρdϕϕ̂.
For ρ < R, Ampère’s law gives

˛
B · dl = µ0Iencl

˛
B (ρ) ϕ̂ · ρdϕϕ̂ = µ0

ρˆ

0

2πˆ

0

ρdρdϕ
2Iρ2

πR4
Θ (R− ρ) k̂ · k̂

Notice that the right side differs from the total current because the limit of the ρ integration is no longer R
when we are interested in the magnetic field inside the wire. On the left side, we can see that B must have
a ϕ̂ component, since the right side of the equation is nonzero. (On the other hand, a loop chosen in the
ρz-plane encloses no current, so the field integral must vanish. We could use this to prove that B is in the
ϕ-direction).

Evaluating the integrals,

˛
B (ρ) ϕ̂ · ρdϕϕ̂ = µ0

ρˆ

0

2πˆ

0

ρdρdϕ
2Iρ2

πR4
Θ (R− ρ) k̂ · k̂

2πB (ρ) ρ = 2πµ0

ρˆ

0

2Iρ3

πR4
dρ

2πB (ρ) ρ = 2πµ0
2Iρ4

4πR4

B (ρ) =
µ0Iρ

3

2πR4

so the field inside the wire is

B =
µ0Iρ

3

2πR4
ϕ̂

For ρ > R, the only difference is that the full current is enclosed (i.e., we take the upper ρ limit to be
R), so the right hand side of the equation is simply µ0I, and the field is

B =
µ0I

2πρ
ϕ̂

Notice that the interior and exterior solutions agree when ρ = R.

2.3 Magnetic field of a long solenoid
Let a solenoid of total length L consist of n turns per unit length of tightly wound wire carrying a current
I in each turn. We can use Ampère’s law if we can figure out the effect of the symmetry. Let the solenoid
lie centered along the z-axis.
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The first point is that we require nLI � I so that the field due to I is negligible compared to the full
field. We may treat each loop as essentially a circle, and neglect the overall flow of current in the z-direction.

With this understanding, we have symmetry in the z-direction, so there can be no z dependence to
magnitude of the magnetic field.

Rotational symmetry about the z axis tells us there can be no ϕ-dependence of the magnitude.
Suppose B takes the form

B = Bz (ρ) k̂ +Bϕ (ρ) ϕ̂ +Br (ρ) r̂

and choose paths along which to evaluate Ampère’s law. First, let C be circle in the ϕ̂-direction. No such
circle inside the solenoid encloses any current, so for r < R,

˛
B · ϕ̂ρdϕ = 0

Bϕ (ρ) 2πρ = 0

so Bϕ = 0. If ρ > R, the same argument applies since we are neglecting the overall current in the z-direction.
Therefore, Bϕ = 0 everywhere.

For the radial component, notice from the Biot-Savart law that B depends linearly on the curren I.
Therefore, if we change the direction of the current, the direction of the field must reverse. Now, flip the
solenoid end for end. This flip cannot change the direction of radial component of the field, but it returns
the system to one identical to the initial one. However, the radial component has flipped sign. The only
possibility is Br (ρ) = 0.

We conclude that as long as we can neglect the slight movement of current (I � nLI), the magnetic field
is along the axis of the solenoid:

B = Bz (r) k̂

This we evaluate using three rectangular loops. Let the first loop lie entirely inside the solenoid with one side
along the z axis for a distance L, two radial sides being of length ρ < R, and the second long side parallel
to the first at radius ρ. Since B has no radial component, and this first curve encloses no current, we have

Bz (0)L−Bz (ρ)L = 0

showing that the magnitude of Bz (ρ) is constant within the solenoid. For the second loop, let both long sides
of the loop lie outside the solenoid. We get a similar result, Bz (ρ2) − Bz (ρ1) = 0, showing that any field
outside the solenoid must be constant as well. This outer constant must be zero, however, since otherwise
a finite current would produce infinite field energy, which as we shall see depends on the integral of B2.
Alternatively, we may argue that for a long but finite solenoid, the current from a sufficiently great distance
looks like only the total z-flow that we have neglected, and this would produce a field that falls off as 1

ρ , in
contradiction to the constancy we have just shown.

We conclude that the field outside the solenoid vanishes.
Finally, choose a third rectangle with one side lying on the z-axis and the other be at any ρ > R. Now

the loops encloses nL turns of the wire, hence a total current nLI. The integrals along the two radial sides
vanish, and there is no field outside, so the only contribution is from the side along the z-axis, giving

Bz (0)L = µ0nLI

Bz (0) = µ0nI

The magnetic field is confined to the interior and is given by,

B = µ0nIk̂
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