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Suppose we apply a constant electric field to a block of material. Then the charges that make up the
matter are no longer in equilibrium: the electrons tend to move in the −E direction and the positive nuclei
tend to move in the direction of the field. In the simplest circumstances, this creates a dipole moment within
the material, and within the material this dipole field, Edipole generally opposes the applied field. The total
electric field is therefore reduced to E−Edipole within the material.

Similarly, an electron approaching a spherical atom will alter the atom. In the simplest model of what
happens, we have a sphere of negative charge around an equal but positively charged center. As the additional
electron approaches, it repels the electron sphere and attracts the nucleus, so the cloud of electrons moves
slightly away and the nucleus moves nearer, creating a slight dipole. This electric field points in the direction
from the nucleus toward the approaching electron, and therefore attracts the approaching negative charge.

These are highly simplified pictures. What happens in realistic situations may be different in different
directions, and may depend nonlinearly on the applied electric field. Here we consider only the linear
approximation.

We divide materials into two types: conductors and insulators. Conductors have free charges that
rearrange to offset any applied fields, but in insulators the charges stay in their respective atoms or molecules.
We call these latter materials dielectrics.

1 Effects of an electric field on molecules

1.1 Non-polar molecules
The effect of an electric field on a molecule can be quite simple or highly complex. The simplest situation
is for a non-polar atom or molecule, where the charge distribution is nearly spherical. In this case, the
positively charged nucleus will experiencen a force in the direction of the field while the electron cloud shifts
in the opposite direction. For atoms, this is the linear Stark effect, often computed as a perturbation of the
quantum states. The net effect is a dipole in the direction opposite to the field,

p = αE

The constant α is called the atomic polarizability.
If the molecule is not spherically symmetric, the polarizability is likely to be different along different axes.

In this case there is a more general linear relationship,

pi =

3∑
i=1

αijEj

The polarizability tensor, αij is symmetric. For example, the x component of the polarization due to an
electric field in the y direction turns out to be the same as the y component of polarization from an electric
field in the x direction. As a result, we may always diagonalize αij along three principal axes.

For strong electric fields, the dipole moment is no longer linear in the electric field.
We will consider dipole moments produced by a simple linear response, p = αE.
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1.2 Polar molecules
Polar molecules already have a dipole moment, p, and an applied electric field acts directly on the separated
plus and minus charges to produce a torque. Write the dipole moment as the charge q at the positive end
times an average displacement from the center, 1

2d,

p =
1

2
qd

This charge experiences a force F+ = qE. The negative end, at − 1
2d experiences a force F− = −qE, so

there is a net torque,

τ =
∑

a=+,−
ra × Fa

=

(
1

2
d

)
× (qE) +

(
−1

2
d

)
× (−qE)

= p×E

The direction of this torque tends to align p with E. If the molecule is free to rotate, it will turn until the
torque vanishes, when the dipole moment is in the direction of the electric field.

1.3 Net force
If a polar molecule is in a nonuniform electric field, then the ends of the dipole do not experience the same
field, so there is a net force on the dipole:

Ftotal = qE

(
d

2

)
+ (−q)E

(
−d

2

)
If d

2 is small, we may expand the electric field in a Taylor series,

E

(
d

2

)
= E (0) +

(
d

2
·∇
)
E (0)

E

(
−d

2

)
= E (0) +

(
−d

2
·∇
)
E (0)

so that substituting into the total force gives

Ftotal = q

(
E (0) +

(
d

2
·∇
)
E (0)

)
+ (−q)

(
E (0) +

(
−d

2
·∇
)
E (0)

)
= qE (0) +

(
qd

2
·∇
)
E (0)− qE (0) +

(
qd

2
·∇
)
E (0)

= (p ·∇)E

2 The potential produced by a polarized material
We will assume that the polarization of materials is linear in both magnitude and direction, so that each atom
in the material acquires a dipole moment p proportional to the applied field p ∝ E. Suppose the applied
electric field varies slowly enough that we can average this dipole moment over an effectively infinitesimal
volume (but containing many molecules), d3x, so that the dipole moment of the small volume is given by
p = Pd3x. It may be that E and P depend on position within the material. Then P is the dipole moment
per unit volume.
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We need to compute the electric potential produced by this polarization, which will then combine with
the applied potential to give a total electric potential in the material. Since a single dipole at the origin
produces a potential at x0 given by

V (x0) =
1

4πε0

p · x0

|x0|3

we may shift the origin to see that a single dipole at postion x produces a potential at x0 of

V (x0) =
1

4πε0

p · (x0 − x)

|x0 − x|3

Now we can add up the combined contributions of small volumes, Pd3x′, over a finite volume,

V (x0) =
1

4πε0

ˆ

V

P (x) · (x0 − x)

|x0 − x|3
d3x

where V is the volume of dielectric.
Now, recall from our discussion of potential that the gradient of 1

|x0−x| with respect to the observation
point x0 is

∇x0

1

|x0 − x|
= − x0 − x

|x0 − x|3

The differentiation with respect to x gives the same, but with the opposite sign,

∇x

(
1

|x0 − x|

)
=

x0 − x

|x0 − x|3

This lets us rewrite the potential:

V (x0) =
1

4πε0

ˆ

V

P (x) · (x0 − x)

|x0 − x|3
d3x

=
1

4πε0

ˆ

V

P ·∇x

(
1

|x0 − x|

)
d3x

Now the identity ∇ · (fv) = ∇f · v + f∇ · v lets us replace

P ·∇x

(
1

|x0 − x|

)
= ∇x ·

(
P

|x0 − x|

)
− 1

|x0 − x|
∇x ·P

Then the potential becomes

V (x0) =
1

4πε0

ˆ

V

(
∇x ·

(
P

|x0 − x|

)
− 1

|x0 − x|
∇x ·P

)
d3x

=
1

4πε0

˛

S

P · n̂
|x0 − x|

− 1

4πε0

ˆ

V

∇x ·P
|x0 − x|

d3x

The first term on the right has the form of the potential due to a surface charge σb ≡ P · n̂, while the second
has the form of the potential due to a charge density ρb ≡∇ ·P. We define the bound surface charge density
and the bound charge density,

σb ≡ P · n̂ (1)
ρb ≡ −∇ ·P (x) (2)
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In terms of these the final potential is

V (x0) =
1

4πε0

˛

S

σb
|x0 − x|

+
1

4πε0

ˆ

V

ρb
|x0 − x|

d3x

Once we know the dipole moment per unit volume, P (x) we can compute σb and ρb and find the electric
potential directly.

3 Electric displacement in linear materials
We could like to characterize the electric field inside a dielectric, or in regions which include dielectrics. We
write the charge density as the effective bound charge density due to the polarization, together with any
other charges (“free charges”) in the system, inside or outside the dielectric,

ρ = ρb + ρf

The free charges from the familiar charge density. The bound charges arise only from the polarization of the
material according to eqs.(1) and (2). Then Gauss’s law is

ε0∇ ·E = ρ

= ρf −∇ ·P

Bringing both divergence terms to the left side of the equation so that ∇ · (ε0E + P) = ρf , we defining the
electric displacement,

D ≡ ε0E + P

so that

∇ ·D = ρf

The electric field is now replaced by the electric displacement and the charge density is given by the free
charge density.

Notice that in general there is no potential for D since we may have ∇×D = ∇×P 6= 0.
Next, we assume a linear material so that the dipole moment per unit volume is proportional to the

electric field in that volume. It is convenient to write the proportionality as

P = ε0χeE

The constant χe is called the electric susceptibility. Clearly this lets us write the electric displacement as

D = ε0 (1 + χe)E

= εE

where ε ≡ ε0 (1 + χe). These things all have names:

ε0 permitivity of free space
ε permitivity, dielectric constant
χe susceptibiliby
ε
ε0

dielectric constant
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We can also simplify our relations for the bound charge densities in linear materials. Starting from
P = ε0χeE, and using Gauss’s law,

ρb ≡ −∇ ·P
= −ε0χe∇ ·E

= ε0χe
1

ε0
ρ

= −χeρ
= −χe (ρf + ρb)

Solving for ρb,
ρb (x) = − χe

1 + χe
ρf (x)

This holds point by point for all x, so if there is no free charge suspended in the dielectric then there is no
bound charge either,

ρf = 0 =⇒ ρb = 0

We may re-express the bound surface charge in terms of the potential. Setting E = −∇V so that
P = −ε0χe∇V gives

σb = n̂ ·P

= −ε0χe
∂V

∂n

where n̂ ·∇V ≡ ∂V
∂n is the directional derivative of V in the outward normal direction. The bound surface

charge is therefore proportional to the normal derivative of the potential at the boundary.

4 Boundary conditions
Recall the discussion of boundary conditions when we introduced Maxwell’s equations for electrostatics. We
now modify those results to include the presence of a linear material.

Integrating the divergence of the displacement over a volume, and using the divergence theorem, we have
ˆ

V

∇ ·D d3x =

ˆ

V

ρfd
3x

˛

S

D · n̂ d2x = Qf

and we can find the boundary condition at an interface by integrating over a small cylinder that pierces the
surface. Making the sides of the cylinder vanishingly small so that the charge density reduces to the surface
density and the surface integral is essentially the contribution of the top and bottom of the cylinder, we have

(Dtop · n̂−Dbottom · n̂)A = σfA

and therefore the change in the normal component of the electric displacement is

Dout
⊥ −Din

⊥ = σf

For the tangential component of the displacement, we take the curl of D ≡ ε0E + P,

∇×D = ∇× (ε0E + P)

= ∇×P
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since the curl of E vanishes. Choose an elongated rectangle with one long side of length L and direction m̂
parallel to the surface on the outside and one long side parallel to the surface on the inside. Let the short
sides have length d� L. Now take the dot product of the normal to this surface with the curl, and integrate
over the surface, ¨

n · (∇×D) d2x =

¨
n · (∇×P) d2x

Using Stokes’ theorem this becomes the line integral around the boundary,
˛

D · dl =

˛
P · dl

Neglecting any contribution from the short sides (you may take the limit as d −→ 0),

L
(
Dout · m̂−Din · m̂

)
= L

(
Pout · m̂−Pin · m̂

)
Cancel L; now, since this relation holds for any m̂ parallel to the surface, we must have

Dout
‖ −Din

‖ = Pout‖ −Pin‖

Recall that the same computation with ∇ × E = 0 gave us Eout‖ − Ein‖ = 0. In linear materials, we may
simply use the equality of parallel components of the electric field, and compute D from E.

5 Summary
In the presence of linear materials we have

∇ ·D = ρf

Since there is always a potential for the electric field, we may write

D = εE

= −ε∇V

so that we have the Poisson equation in terms of the free charge density as before, but with ε0 replaced by ε:

∇2V = −ρf
ε

The boundary conditions change to

Dout
⊥ −Din

⊥ = σf

Eout‖ −Ein‖ = 0

With free charges absent, ρf = ρb = 0 and σf = 0, so for the interior or exterior regions we are solving
only the Laplace equation

∇2Vin = 0

∇2Vout = 0

and the boundary conditions are simple continuity of the normal component of D and the parallel component
of E:

Dout
⊥ −Din

⊥ = 0

Eout‖ −Ein‖ = 0
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If we have azimuthal symmetry, the solutions may be written as

Vin (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

Vout (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

and we need only impose the boundary conditions.

6 Solution to the Laplace equation in cylindrical coordinates
First, we need the solution to the Laplace equation in cylindrical coordinates,

1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1

ρ2
∂2V

∂ϕ2
+
∂2V

∂z2
= 0

Using separation of variables, we write V = R (ρ) Φ (ϕ)Z (z), substitute, then divide by V ,

ΦZ
1

ρ

d

dρ

(
ρ
dR

dρ

)
+RZ

1

ρ2
d2Φ

dϕ2
+RΦ

d2Z

dz2
= 0

1

R

1

ρ

d

dρ

(
ρ
dR

dρ

)
+

1

Φ

1

ρ2
d2Φ

dϕ2
+

1

Z

d2Z

dz2
= 0

The only z-dependence is in the final term, so we must have

1

Z

d2Z

dz2
= α2

d2Z

dz2
− α2Z = 0

so that for α2 > 0, Z = Aeαz +Be−αz. Then, multiplying by ρ2 we have

ρ

R

d

dρ

(
ρ
dR

dρ

)
+

1

Φ

d2Φ

dϕ2
+ α2ρ2 = 0

leaving the ϕ dependence isolated in the middle term. Therefore, since we need periodicity in ϕ, we set

1

Φ

d2Φ

dϕ2
= −β2

d2Φ

dϕ2
+ β2Φ = 0

to get Φ = C cosβϕ+D sinβϕ. Since we require the full azimuthal angle, ϕ : 0→ 2π, we must have β = m
for some integer m.

Finally, we are left with

ρ
d

dρ

(
ρ
dR

dρ

)
+
(
α2ρ2 − β2

)
R = 0

This is the Bessel equation. We will only solve a simpler version of this here.
We do not need the full solution to the Bessel equation, since the current problem has no z dependence.

Setting α2 = 0 and β = m gives a simpler equation,

ρ
d

dρ

(
ρ
dR

dρ

)
−m2R = 0
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When m 6= 0, powers of ρ work. Let R = ρλ. Then

ρ
d

dρ

(
ρλρa−1

)
−m2ρa = 0

λ2ρa −m2ρa = 0

so that λ = ±m. Finally, when m = 0, we have

d

dρ

(
ρ
dR

dρ

)
= 0

ρ
dR

dρ
= b

dR =
b

ρ
dρ

and integrating,
R = a+ b ln ρ

The full solution when V = V (ρ, ϕ) only is therefore

V (ρ, ϕ) = a+ b ln ρ+

∞∑
m=1

(
amρ

m +
bm
ρm

)
(cm cosmϕ+ dm sinmϕ)

7 Examples

7.1 Infinite half-space
Let the x > 0 half of space be filled with a uniform linear dielectric with permitivity ε, while the region
x < 0 remains empty. Suppose there is a constant electric field, Eout = Eoutx î+Eouty ĵ in the free space region
outside the dielectric (x < 0). Find the electric field in the dielectric.

The boundary conditions are:

Dout
⊥ −Din

⊥ = 0

Eout‖ −Ein‖ = 0

Let the field outside the dielectric, E = Ex î + Ey ĵ, be Eout, and let

Ein = Einx î + Einy ĵ + Eink k̂

be the field inside the dielectric. Then

Eout‖ = Eouty ĵ

Eout⊥ = Eoutx

and

Ein‖ = Einy ĵ + Eink k̂

Ein⊥ = Einx

Imposing the boundary conditions, with Dout = ε0E
out and Din = εEin

ε0E
out
x − εEinx = 0

Eouty ĵ− Einy ĵ− Eink k̂ = 0
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and therefore

εEinx = ε0E
out
x

Einy = Eouty

Einz = 0

and the field inside the dielectric is
Ein =

ε0
ε
Eoutx î + Eouty ĵ

Suppose we write this in terms of angles. The normal to the surface is î. Let the incoming electric field
make an angle θ with this normal. Then

Eout = Eout0

(̂
i sin θ + ĵ cos θ

)
so that

Eoutx = E0 cos θ

Eouty = E0 sin θ

Similarly, if the electric field in the dielectric makes an angle θ′ with î then

Ein = Ein0

(̂
i cos θ′ + ĵ sin θ′

)
=

ε0
ε
Eoutx î + Eouty ĵ

Equating components,

Ein0 cos θ′ =
ε0
ε
Eoutx

=
ε0
ε
E0 cos θ

Ein0 sin θ′ = E0 sin θ

we have

Ein0 sin θ′

Ein0 cos θ′
=

E0 sin θ
ε0
ε E0 cos θ

sin θ′

cos θ′
=

ε sin θ

ε0 cos θ

ε0 tan θ′ = ε tan θ

This is not the same as Snell’s law, which holds for electromagnetic waves at a similar interface and depends
on the index of refraction, n, and not just the dielectric constant.

7.2 Infinite half-space with a charge
7.2.1 The induced bound charge density

Let the z < 0 half of space be filled with a uniform linear dielectric with permitivity ε, while the region x > 0
remains empty except for a single charge Q on the z axis at a distance d > 0. Find the electric field on the
positive z axis and compute the force on the charge Q.
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The solution for the potential in the upper region is a linear combination of the potential of the given
charge and the response of the dielectric. Since ρb = − χe

1+χe
ρf and there is no free charge inside the dielectric,

ρb = 0. However, there will be a surface charge density given by

σb = −ε0χe
∂V

∂n

= −ε0χe
∂V

∂z

at the boundary, where the potential at the boundary is:

V (x) =
Q

4πε0

1√
x2 + y2 + (z − d)

2
+ Vb (x)

To take the derivative to find σb, we need to find the potential Vb due to σb. This isn’t as circular as it seems,
since sufficiently near the surface the field is the same as for an infinite plane with charge per unit area σb ,

Eb|above surface =
σb
2ε0

n̂

Integrating gives the electric field,

Vb (z) =
σb |z|
2ε0

for small z. The surface charge therefore satisfies

σb = −ε0χe
∂

∂z

 Q

4πε0

1√
x2 + y2 + (z − d)

2
+
σbz

2ε0

∣∣∣∣∣∣
z=0

=
χeQ

4π

z − d(
x2 + y2 + (z − d)

2
)3/2 − 1

2
χeσb

∣∣∣∣∣∣∣
z=0

= −χeQ
4π

d(
x2 + y2 + (z − d)

2
)3/2 − 1

2
χeσb

∣∣∣∣∣∣∣
z=0

Solving for σb, (
1 +

χe
2

)
σb = −χeQ

4π

d

(x2 + y2 + d2)
3/2

σb = − χe
2π (2 + χe)

Qd

(x2 + y2 + d2)
3/2

Once we know this, it is possible to find the potential using the method of images. The result follows by
placing a charge q at −dk̂ and matching the boundary conditions.

7.2.2 Doing it the hard way (optional!)

It is also possible to find the full potential without the method of images, while still avoiding elliptic integrals.
First, notice that given σb, we may compute Vb everywhere by direct integration, but the form of the

integral is daunting.

Vb (x0) =
1

4πε0

˛

S

σb
|x0 − x|
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=
1

4πε0

∞̂

−∞

∞̂

−∞

dxdy
σb

|x0 − x|

∣∣∣
z=0

= − χe
2π (2 + χe)

Qd

4πε0

∞̂

−∞

∞̂

−∞

dxdy
1(

(x0 − x)
2

+ (y0 − y)
2

+ z20

)1/2 1

(x2 + y2 + d2)
3/2

Instead of tackling this straight on, we first restrict to the positive z-axis. From there we can use a Legendre
series to write the potential for all z > 0. Finally, we recognize the expansion as the sum of two Coulomb
potentials. To begin, we rewrite

Vb (z0) = − χe
2π (2 + χe)

Qd

4πε0

∞̂

−∞

∞̂

−∞

dxdy
1

(x2 + y2 + z20)
1/2

1

(x2 + y2 + d2)
3/2

in cylindrical coordinates. With the observation point at

x0 = z0k̂

the potential becomes

Vb (z0) = − χe
2π (2 + χe)

Qd

4πε0

∞̂

0

2πˆ

0

dϕρdρ
1

(ρ2 + z20)
1/2

1

(ρ2 + d2)
3/2

= − χe
2 + χe

Qd

4πε0

∞̂

0

ρdρ
1

(ρ2 + z20)
1/2

1

(ρ2 + d2)
3/2

Now let ξ = ρ2 so that dξ = 2ρdρ. Then

Vb (z0) = − χe
2 + χe

Qd

8πε0

∞̂

0

dξ

(ξ + z20)
1/2

(ξ + d2)
3/2

[(
ξ + z20

)1/2
(ξ + d2)

1/2

]′

=
1

2

1

(ξ + z20)
1/2

(ξ + d2)
1/2
− 1

2

(
ξ + z20

)1/2
(ξ + d2)

3/2

=
1

2

[
ξ + d2

(ξ + z20)
1/2

(ξ + d2)
3/2
− ξ + z20

(ξ + z20)
1/2

(ξ + d2)
3/2

]

=
1

2

d2 − z20
(ξ + z20)

1/2
(ξ + d2)

3/2

With a little help from Wolfram integrator, we have

Vb (z0) = − χe
2 + χe

Qd

8πε0

[
2

d2 − z20

(
ξ + z20

)1/2
(ξ + d2)

1/2

]∞
0

= − χe
2 + χe

Qd

8πε0

(
2

d2 − z20
− 2z0
d (d2 − z20)

)
= − χe

2 + χe

Q

4πε0 (d2 − z20)
(d− z0)

= − χe
2 + χe

Q

4πε0 (d+ z0)
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Therefore, the potential on the zaxis is (dropping the subscript on z0)

V (z) =
Q

4πε0

1√
(z − d)

2
− χe

2 + χe

Q

4πε0 (d+ z)

Notice that this already has the form of two Coulomb potentials restricted to the z axis.
We can show rigorously that the full solution is exactly two Coulomb potentials. For z > d, we may

expand in Taylor series,

V (z) =
Q

4πε0

(
1

z − d
− χe

2 + χe

1

d+ z

)
=

Q

4πε0z

(
1

1− d
z

− χe
2 + χe

1

1 + d
z

)

=
Q

4πε0z

∞∑
n=0

((
d

z

)n
− χe

2 + χe
(−1)

n

(
d

z

)n)

=
Q

4πε0z

∞∑
n=0

(
1− χe

2 + χe
(−1)

n

)(
d

z

)n
=

Q

4πε0

∞∑
n=0

(
1− χe

2 + χe
(−1)

n

)(
dn

zn+1

)
If we compare this to the expansion in Legendre polynomials when r = z and θ = 0,

V (z) =
Q

4πε0

∞∑
n=0

(
Alz

l +
Bl
zl+1

)
Pl (1)

Q

4πε0

∞∑
n=0

(
1− χe

2 + χe
(−1)

n

)(
dn

zn+1

)
=

Q

4πε0

∞∑
n=0

(
Alz

l +
Bl
zl+1

)
we see that

Al = 0

Bl =

(
1− χe

2 + χe
(−1)

n

)
dn

and this determines the whole series:

V (r, θ) =
Q

4πε0

∞∑
n=0

(
1− χe

2 + χe
(−1)

n

)(
dl

zl+1

)
Pl (cos θ)

But we know that we can expand

1

|x0 − x|
=

Q

4πε0

∞∑
n=0

(
rl

rl+1
0

)
Pl (cos θ)

so we recognize V (r, θ) as

V (r, θ) =
Q

4πε0

 1∣∣∣x0 − dk̂
∣∣∣ − χe

2 + χe

1∣∣∣x0 + dk̂
∣∣∣


and this is just the potential of the original charge Q together with that of an image charge − χe

2+χe
Q at −dk̂.

The same reasoning lets us show the result for z < d, or we can show that this V satisfies the correct
boundary conditions.
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7.3 Dielectric sphere in a uniform field
A sphere of radius R, made of linear dielectric material is placed in an otherwise uniform electric field E0.
Find the resulting field inside and outside the sphere. The susceptibility is χe.

First, choose the z-axis in the direction of the uniform electric field. Then the boundary condition at
infinity is

V∞ = −E0r cos θ

Solving the Laplace equation for the potential outside the sphere, we have

Vout (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

As r → ∞, the Bl terms become negligibly small. The rl terms grow large, but we must nevertheless have
a term linear in r,

V∞ (r, θ) = −E0r cos θ =

∞∑
l=0

Alr
lPl (cos θ)

so A1 = −E0, with all other Al = 0. Therefore, putting in the single nonzero Al term explicitly, we have

Vout (r, θ) = −E0r cos θ +

∞∑
l=0

Bl
rl+1

Pl (cos θ)

for the exterior solution. To find the constants Bl, we must match this to the interior solution.
In the interior of the sphere, we have the free and bound charge densities related by

ρb =
χe

1− χe
ρf

but there is no free charge so both vanish, and we again solve the Laplace equation,

Vin (r, θ) =

∞∑
l=0

(
Clr

l +
Dl

rl+1

)
Pl (cos θ)

This time, regularity at the origin tells us that Dl = 0 for all l, so

Vin (r, θ) =

∞∑
l=0

Clr
lPl (cos θ)

The boundary conditions at r = R are:

Dout
⊥ −Din

⊥ = σf

Eout‖ −Ein‖ = 0

Now, compute the electric field:

Eout = −∇Vout (r, θ)

= −
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ

)(
−E0r cos θ +

∞∑
l=0

Bl
rl+1

Pl

)

= r̂

(
E0 cos θ +

∞∑
l=0

(l + 1)Bl
rl+2

Pl

)
− θ̂

(
E0 sin θ +

∞∑
l=1

Bl
rl+2

∂Pl
∂θ

)
Ein = −∇Vin (r, θ)

= −
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ

) ∞∑
l=0

Clr
lPl

= −r̂
∞∑
l=1

lClr
l−1Pl − θ̂

∞∑
l=1

Clr
l−1 ∂Pl

∂θ

13



where we use ∂P0

∂θ = 0 in the second sum. The parallel components are those in the θ̂ direction. For the
parallel components at r = R

Eout‖ = Ein‖

−θ̂

(
E0 sin θ +

∞∑
l=1

Bl
Rl+2

∂Pl
∂θ

)
= −θ̂

∞∑
l=1

ClR
l−1 ∂Pl

∂θ(
−E0

∂P1

∂θ
+
B1

R3

∂P1

∂θ

)
+

∞∑
l=2

Bl
Rl+2

∂Pl
∂θ

= C1
∂P1

∂θ
+

∞∑
l=2

ClR
l−1 ∂Pl

∂θ

where we separate out the l = 1 terms.
The derivative terms are all independent (see optional section below), so each coefficient must vanish.

For each l ≥ 2, this implies

Cl =
Bl

R2l+1

while for the l = 1 term,

C1 = −E0 +
B1

R3

This fixes all of the Cl in terms of the Bl.
Now we look at the normal components of D. Again, there is no free surface charge, so we have continuity

of the normal components at R

Dout
⊥ = Din

⊥

ε0E0P1 + ε0

∞∑
l=0

(l + 1)Bl
Rl+2

Pl = −ε
∞∑
l=1

lClR
l−1Pl

where we have written P1 for cos θ. For l = 0,

ε0
B0

R2
= 0

B0 = 0

For l = 1,

ε0E0P1 + ε0
2B1

R3
P1 = −εC1P1

ε0E0 + ε0
2B1

R3
= −εC1

ε0E0 + ε0
2B1

R3
= −ε

(
−E0 +

B1

R3

)
(

2ε0 + ε

R3

)
B1 = (ε− ε0)E0

B1 =

(
ε− ε0
2ε0 + ε

)
E0R

3

Finally, for the remaining l,

ε0
(l + 1)Bl
Rl+2

= −εlClRl−1
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Substituting the values for Cl,

ε0
(l + 1)Bl
Rl+2

= −εl Bl
R2l+1

Rl−1

Bl

(
ε0

(l + 1)

Rl+2
+ εl

1

R2l+1
Rl−1

)
= 0

1

Rl+2
Bl (ε0 (l + 1) + εl) = 0

Bl = 0

and therefore Bl = 0 and Cl = 0 for all l ≥ 2, while for the l = 1 term,

C1 = −E0 +
B1

R3

= −E0 +
1

R3

(
ε− ε0
2ε0 + ε

)
E0R

3

= − 3ε0
2ε0 + ε

E0

The potential is

Vout (r, θ) = −E0r cos θ +

(
ε− ε0
2ε0 + ε

)
R3

r2
E0 cos θ

Vin (r, θ) = − 3ε0
2ε0 + ε

E0r cos θ

At the boundary, we check continuity:

Vout (R, θ) = −E0R cos θ +

(
ε− ε0
2ε0 + ε

)
E0R cos θ

= − 3ε0
2ε0 + ε

E0R cos θ

= Vin (R, θ)

The final electric fields are

Eout =

(
1 +

2R3

r3

(
ε− ε0
2ε0 + ε

))
E0

(
cos θr̂− sin θθ̂

)
=

(
1 +

2R3

r3

(
ε− ε0
2ε0 + ε

))
E0k̂

Ein =
3ε0E0

2ε0 + ε

(
cos θr̂− sin θθ̂

)
Ein =

3ε0
2ε0 + ε

E0k̂

Notice that the polarization density is in the same direction as the electric field.

7.4 Proof of the orthogonality of derivatives of Legendre polynomials (optional)
In solving this, we had the equality

E0 sin θ−B1

R3
sin θ+

B2

R4

∂

∂θ
P2 (cos θ)+

∞∑
l=3

Bl
Rl+2

∂

∂θ
Pl (cos θ) = −A′1 sin θ+A′2R

∂

∂θ
P2 (cos θ)+

∞∑
l=0

A′lR
l−1 ∂

∂θ
Pl (cos θ)
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It’s not hard to guess that
E0 sin θ = −A′1 sin θ

but let’s look in detail at more general derivative terms. For P2 = 1
2

(
3x2 − 1

)
we have

∂

∂θ
P2 (cos θ) =

∂

∂θ

1

2

(
3 cos2 θ − 1

)
= −3 cos θ sin θ

Notice two things:

1. The derivative is of the same order as P2 in trig functions

2. The expression involves sin θ, which is indepenent of cos θ

These derivatives must be expressed in terms the associated Legendre polynomials, which give the θ-dependence
of the spherical harmonics (which also depend on ϕ). All of these are orthogonal to the rest. To show the
independence of two of the derivative terms,

∂

∂θ
Pl (cos θ) ,

∂

∂θ
Pl′ (cos θ)

we may integrate,
π̂

0

∂

∂θ
Pl (cos θ)

∂

∂θ
Pl′ (cos θ) sin θdθ

To change to x = cos θ, we need

∂

∂θ
=

∂x

∂θ

∂

∂x

= − sin θ
∂

∂x

and the integral becomes

π̂

0

∂

∂θ
Pl (cos θ)

∂

∂θ
Pl′ (cos θ) sin θdθ =

1ˆ

−1

sin2 θ
∂

∂x
Pl (x)

∂

∂x
Pl′ (x) dx

=

1ˆ

−1

∂

∂x
Pl (x)

∂

∂x
Pl′ (x)

(
1− x2

)
dx

Without loss of generality, suppose l′ < l. Then we may integrate by parts

1ˆ

−1

∂Pl
∂x

∂Pl′

∂x

(
1− x2

)
dx =

1ˆ

−1

∂

∂x

(
Pl
∂Pl′

∂x

(
1− x2

))
dx−

1ˆ

−1

Pl
∂

∂x

(
∂Pl′

∂x

(
1− x2

))
dx

But ∂Pl′
∂x is a polynomial of order xl

′−1 so that ∂
∂x

(
∂Pl′
∂x

(
1− x2

))
is a polynomial of order xl

′−1+2−1 = xl
′

and therefore expressible in terms of Legendre polynomials of order l′ or less. Since this linear combination,

∂

∂x

(
∂Pl′

∂x

(
1− x2

))
=

l′∑
k=0

αkPk (x)

is multiplied by Pl with l > k, each term in the sum is orthogonal and the integral vanishes.
This proves that ∂

∂θPl (cos θ) and ∂
∂θPl′ (cos θ) are orthogonal if l 6= l′.

You may assume this when working these problems.
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8 Exercises

8.1 Parallel plate capacitor
Consider two parallel rectangular conducting plates of area A and with separation d, with d� A.

1. Neglecting edge effects, compute the capacitance when there is no material between the plates.

2. Recompute the capacitance if a uniform, linear dielectric material of permitivity ε fills the region
between the plates.

8.2 Plane and dielectric
The region below the xy-plane is filled with a dielectric material of permitivity ε. An infinite conducting
plane with surface charge density σ is held at z = d parallel to the surface of the dielectric. Find the bound
surface charge density of the dielectric.

8.3 Spherical shell
A hollow dielectric sphere extends from r = a to r = b. The region with r < a and the region with r > b are
empty except for a charge Q placed at the origin.

1. Find the electric potential and electric field everywhere.

2. Find the bound surface charge on both spherical surfaces (at a and at b).

3. Integrate your answers to part 2 over each surface to find the total bound charge on each surface.

8.4 Charge outside a dielectric half-space
Repeat the example above of a single charge Q a distance d from an infinite half-space filled with a material
of permitivity ε using the method of images.

8.5 Dielectric cylinder
A solid dielectric cylinder of radius ρ = R and infinitely long lies centered along the z-axis. There is a
uniform electric field in the x-direction, E = E0 î, perpendicular to the axis of the cylinder. Find the electric
potential everywhere.
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