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We will make important use of the separation of variables in spherical coordinates, because the separation
ends up giving us a series in terms of powers of r. For an isolated system, this means the expansion gives a
way to approximate the field far from the source.

1 Separation of variables in spherical coordinates
In spherical coordinates the Laplace equation takes the form

1

r2

∂

∂r

(
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r2 sin θ

∂

∂θ

(
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r2 sin2 θ

∂2V

∂ϕ2
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We apply the same steps as we did for Cartesian coordinates, but the difference in the form of the Laplace
equation raises some new issues.

1.1 Step 1: Substitute the separation assumption
We assume a solution of the form

V (r, θ, ϕ) = R (r) Θ (θ) Φ (ϕ)

and substitute.

1.2 Step 2: Find the separated equations
Dividing by RΘΦ, we have

1

r2R

d
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(
r2 dR
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+

1

r2 sin θ

1
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(
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+

1
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1
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d2Φ
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This time, nothing separates until we multiply by r2 sin2 θ,

r2 sin2 θ

r2R

d

dr

(
r2 dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ

d2Φ

dϕ2
= 0

and even now only the Φ term has completely separated.
Take the partial derivative with respect to ϕ. Since the first two terms depend only on r and θ, this

shows that

∂

∂ϕ

(
1

Φ

d2Φ

dϕ2

)
= 0

and therefore

1

Φ

d2Φ

dϕ2
= −m2
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Here we usually choose the constant to be negative because solutions involving the full range of ϕ from 0 to
2π must be periodic. Lesser ranges may have either sign. The Φ equation is therefore

d2Φ

dϕ2
+m2Φ = 0

The remainder of the Laplace equation is now

sin2 θ

R

d

dr

(
r2 dR
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)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
−m2 = 0

so dividing by sin2 θ separates the remaining two variables,

1
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)
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1
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1
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d

dθ

(
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dθ

)
− m2

sin2 θ
= 0

Differentiating with respect to r and θ respectively show that

1
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d

dr

(
r2 dR
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)
= a

1

Θ

1

sin θ

d

dθ

(
sin θ
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dθ

)
− m2
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= −a

where the two constants must add to zero.

1.3 Step 3: Solving the equations
The simplest equation is the one for Φ, with solution

Φ = C sinmϕ+D cosmϕ

or more commonly
Φ (ϕ) = Ame

imϕ

for positive and negative m.
Rewriting the R equation as

d

dr

(
r2 dR

dr

)
− aR = 0

Notice that rescaling r leaves this equation unchanged. This is a clue that powers of r may work. Substituting
a power-law solution, R (r) = rl,

d

dr

(
r2 d

(
rl
)

dr

)
− arl = 0

l
d

dr

(
rl+1

)
− arl = 0

(l (l + 1)− a) rl = 0

and with a = l (l + 1) we have a solution for every number l. Notice that there are two values of l that give
the same value for asince the quadratic equation,

l2 + l − a = 0
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has two solutions. Let l have some value k, so that a = k (k + 1). Then the value l = − (k + 1) gives the
same value, a = (− (k + 1)) (− (k + 1) + 1) = k (k + 1).

Setting a = l (l + 1), we have only the θ equation remaining,

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
l (l + 1)− m2

sin2 θ

)
Θ = 0 (1)

The solutions to the θ equation with m = 0 are called the Legendre polynomials. Solutions with general m
may be found by differentiating the Legendre polynomials, giving the associated Legendre polynomials. We
consider only the m = 0 case. To start, we define a new variable,

x = cos θ

Then

d

dθ
=

dx

dθ

d

dx

= − sin θ
d

dx

and therefore

d

dx
= − 1

sin θ

d

dθ

Thus, with m = 0, and replacing the derivatives, eq.(1) becomes d
dx

(
sin2 θ dΘ

dx

)
+ l (l + 1) Θ = 0. Replacing

sin2 θ = 1− cos2 θ = 1− x2, we have the Legendre equation,

d

dx

((
1− x2

) dΘ

dx

)
+ l (l + 1) Θ = 0 (2)

The solutions are polynomials, Pl (x) = Pl (cos θ).
For example, suppose Θ takes the form

P2 (x) = a0 + a1x

Then substituting,

0 =
d

dx

((
1− x2

) dP2 (x)

dx

)
+ l (l + 1)P2 (x)

=
d

dx

((
1− x2

) d (a0 + a1x)

dx

)
+ l (l + 1) (a0 + a1x)

=
d

dx

(
a1

(
1− x2

))
+ l (l + 1) (a0 + a1x)

= −2a1x+ l (l + 1) a0 + l (l + 1) a1x

= l (l + 1) a0 + (l (l + 1) a1 − 2a1)x

This gives two equations,

l (l + 1) a0 = 0

l (l + 1) a1 − 2a1 = 0

The first gives either a0 = 0 or l (l + 1) = 0, while the second gives either a1 = 0 or l (l + 1) = 2.
This equation for l has two possible solutions, l = 1 or l = −2. Since we cannot have both a0 and a1

vanishing, we get two possibilities:
P0 = a0, l = −1 or 0
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or
P1 = a1x, l = −2 or 1

The remaining constants are chosen so that Pl (1) = 1. The presence of two solutions for l for the same
Legendre polynomial means that for each Pl there will be two powers of r. The solutions will be of the form

V (r, θ) =

(
r0 +

1

r

)
P0 (cos θ) +

(
r +

1

r2

)
P1 (cos θ) + · · ·

where

P0 (cos θ) = 1

P1 (cos θ) = cos θ

Like the harmonic functions, there are many relationships among the Legendre polynomials. The most
important for us now is the orthogonality relationship,

π
2ˆ

0

Pl (cos θ)Pl′ (cos θ) sin θdθ =
2

2l + 1
δll′

Notice that the right side may be written as either 2
2l+1δll′ or as

2
2l′+1δll′ since it is only nonzero when l = l′.

We may also write this in terms of x = cos θ. With dx = − sin θdθ, we have

1ˆ

−1

Pl (x)Pl′ (x) dx =
2

2l + 1
δll′

When m is nonzero the solutions are called associated Legendre polynomials, Pml (x). The range of m is
from −l to +l.

1.4 Step 4: Put it all together
For general m, the full solution is

V (r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(
Almr

l +
Blm
rl+1

)
Pml (cos θ) eimϕ

We will only consider m = 0 cases, which apply to problems with azimuthal symmetry. Setting Al0 = Al
and Blm = Bl,

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ) (3)

The constants Alm and Blm are uniquely determined by the boundary conditions.

2 Fitting boundary conditions in spherical coordinates

2.1 Example: Piecewise constant potential on hemispheres
Let the region of interest be the interior of a sphere of radius R. Let the potential be V0 on the upper
hemisphere, and −V0 on the lower hemisphere,

V (R) = V0

(
Θ
(π

2
− θ
)
−Θ

(
θ − π

2

))
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We require the potential to be nonsingular everywhere within the sphere.
To find the potential, we may immediately write

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

and impose the boundary conditions. First, notice that finiteness everywhere means that we cannot have
the Bl

rl+1 terms because they diverge at r = 0. Therefore, we set Bl = 0 for all l. The remaining condition at
r = 0 is

V0

(
Θ
(π

2
− θ
)
−Θ

(
θ − π

2

))
=

∞∑
l=0

AlR
lPl (cos θ)

We multiply this by Pk (cos θ) and integrate from 0 to π,
π̂

0

V0

(
Θ
(π

2
− θ
)
−Θ

(
θ − π

2

))
Pk (cos θ) sin θdθ =

∞∑
l=0

AlR
l

π̂

0

Pl (cos θ)Pk (cos θ) sin θdθ

V0

π
2ˆ

0

Pk (cos θ) sin θdθ − V0

π̂

π
2

Pk (cos θ) sin θdθ =
∞∑
l=0

2AlR
l

2l + 1
δkl

V0

1ˆ

0

Pk (x) dx− V0

0ˆ

−1

Pk (x) dx =
2AkR

k

2k + 1

First, for k = 0, P0 (x) = 1 and the left side vanishes and A0 = 0.
For the k > 0 integrals on the left we use the symmetry of the Legendre polynomials. Change variable

from x to −x in the second integral to write

V0

 1ˆ

0

Pk (x) dx−
0ˆ

−1

Pk (x) dx

 = V0

 1ˆ

0

Pk (x) dx+

0ˆ

1

Pk (−x) dx


= V0

 1ˆ

0

Pk (x) dx−
1ˆ

0

Pk (−x) dx


= V0

1ˆ

0

(Pk (x) dx− Pk (−x)) dx

We know that the odd Legendre polynomials are polynomials in odd powers of x, and the even are even.
Therefore,

Pk (−x) = Pk (x) k even

Pk (−x) = −Pk (x) k odd

and the difference we need vanishes for all even polynomials. For the odd cases, the left side becomes

V0

1ˆ

0

(Pk (x) dx− Pk (−x)) dx = 2V0

1ˆ

0

Pk (x) dxdx

Now, among many identities for the Legendre polynomials, we findˆ
Pk (x) dx =

Pk+1 (x)− Pk−1 (x)

2k + 1
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so the integral we need becomes

2V0

1ˆ

0

Pk (x) dx = 2V0
Pk+1 (x)− Pk−1 (x)

2k + 1

∣∣∣∣1
0

=
2V0

2k + 1
[(Pk+1 (1)− Pk−1 (1))− (Pk+1 (0)− Pk−1 (0))]

= − 2V0

2k + 1
(Pk+1 (0)− Pk−1 (0))

since Pk (1) = 1 for all k. This still requires some work to determine the value of Legendre polynomials at
x = 0. For now we just leave the answer in terms of these values, so for all odd k,

− 2V0

2k + 1
(Pk+1 (0)− Pk−1 (0)) =

2AkR
k

2k + 1

Ak =
V0

Rk
(Pk−1 (0)− Pk+1 (0))

The potential at all points inside the sphere is therefore,

V (r, θ) = V0

∞∑
l=0

(Pl−1 (0)− Pl+1 (0))
rl

Rl
Pl (cos θ)

2.2 Example: Varying potential on a sphere
Let a sphere of radius R have potential

V (r = R, θ, ϕ) = V0 cos2 θ

Find the potential everywhere inside and outisde the sphere.
For the interior solution, we again must have the potential finite at r = 0, so we immediately set Bl = 0

and write the potential as

V (r, θ) =

∞∑
l=0

Alr
lPl (cos θ)

To fit the boundary condition at r = R, we require

V0 cos2 θ =

∞∑
l=0

AlR
lPl (cos θ)

or, with x = cos θ,

V0x
2 =

∞∑
l=0

AlR
lPl (x)

Because the left hand side is a simple, low order polynomial, it is easiest to write the left side in Legendre
polynomials. We only need polynomials up to order x2 and only even ones. The two relevant Legendre
polynomials are therefore

P0 (x) = 1

P2 (x) =
1

2

(
3x2 − 1

)
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Solving for x2,

x2 =
2

3
P2 (x) +

1

3

=
2

3
P2 (x) +

1

3
P0 (x)

The boundary condition therefore requires

2V0

3
P2 (x) +

V0

3
P0 (x) =

∞∑
l=0

AlR
lPl (x)

and orthogonality of the polynomials implies, matching terms,

A0 =
V0

3

A2R
2 =

2V0

3

The potential everywhere inside the sphere is

V (r, θ) =
V0

3
r0P0 (cos θ) +

2V0

3R2
r2P2 (cos θ)

=
V0

3
+
V0

3

2r2

R2

1

2

(
3 cos2 θ − 1

)
=

V0

3

(
1 +

r2

R2

(
3 cos2 θ − 1

))
The potential outside the sphere has the same boundary condition at r = R, but requires Al = 0.

Therefore, the boundary condition at R will be

2V0

3
P2 (x) +

V0

3
P0 (x) =

∞∑
l=0

Bl
Rl+1

Pl (x)

so that
B0

R
=

V0

3
B2

R3
=

2V0

3

and the potential becomes

V (r, θ) =

∞∑
l=0

Bl
rl+1

Pl (x)

=
B0

r
P0 (x) +

B2

r3
P2 (x)

=
V0R

3r

(
1 +

R2

r2

(
3 cos2 θ − 1

))
Notice that the interior and exterior solutions agree at r = R.

2.3 Example: Varying potential on a sphere (a more challenging example)
Let a sphere of radius R have potential

V (r = R, θ, ϕ) = V0 sin4 θ

Find the potential everywhere inside and outisde the sphere.
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Inside:

Since we have spherical boundary conditions, it is easiest to use the spherical separation, and since the
problem has azimuthal symmetry, we may use the solution to the Laplace equation in the form

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

Our boundary conditions are

V (0) = finite

V (R, θ, ϕ) = V0 sin4 θ

The first of these conditions shows that Bl = 0 for all l. The outer boundary condition becomes

V0 sin4 θ =

∞∑
l=0

AlR
lPl (x)

Essentially, we must express V0 sin4 θ in terms of Legendre polynomials.
Let x = cos θ. Then noting that we may write

V0 sin4 θ = V0

(
1− cos2 θ

)2
= V0

(
1− x2

)2
= V0

(
1− 2x2 + x4

)
we should be able to write the potential on the sphere in terms of Legendre polynomials of even order less
than or equal to x4. Using higher order polynomials would introduce undesired higher powers of x. The
three relevant polynomials are:

P0 (x) = 1

P2 (x) =
1

2

(
3x2 − 1

)
P4 (x) =

1

8

(
35x4 − 30x2 + 3

)
Rearranging and combining to produce x4 − 2x2 + 1, we start with

x4 =
1

35

(
8P4 (x) + 30x2 − 3

)
x2 =

1

3
(2P2 (x) + 1)

x4 − 2x2 + 1 =
1

35

(
8P4 (x) + 30x2 − 3

)
− 2x2 + 1

=
8

35
P4 (x) +

(
30

35
− 2

)
x2 +

(
1− 3

35

)
=

8

35
P4 (x) +

(
6

7
− 14

7

)
x2 +

32

35

=
8

35
P4 (x)− 8

7

(
1

3
(2P2 (x) + 1)

)
+

32

35

=
8

35
P4 (x)− 16

21
P2 (x)− 8

21
+

32

35
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=
8

35
P4 (x)− 16

21
P2 (x) +

8

7

(
4

5
− 1

3

)
=

8

35
P4 (x)− 16

21
P2 (x) +

8

7

(
7

15

)
=

8

35
P4 (x)− 16

21
P2 (x) +

8

15
P0 (x)

Therefore, we must solve

V0

(
8

35
P4 (x)− 16

21
P2 (x) +

8

15
P0 (x)

)
=

∞∑
l=0

AlR
lPl (x)

for the coefficients Al. To do this, we use the orthogonality relation,
ˆ 1

−1

Pl (x)Pl′ (x) dx =
2

2l + 1
δll′

Multiply our equation by an arbitrary Pk (x) for any fixed k, and integrate over all x,

V0

ˆ 1

−1

(
8

35
P4 (x)− 16

21
P2 (x) +

8

15
P0 (x)

)
Pk (x) dx =

∞∑
l=0

AlR
l

ˆ 1

−1

Pl (x)Pk (x) dx

8V0

35

ˆ 1

−1

P4 (x)Pk (x) dx− 16V0

21

ˆ 1

−1

P2 (x)Pk (x) dx+
8V0

15

ˆ 1

−1

P0 (x)Pk (x) dx =

∞∑
l=0

AlR
l 2

2l + 1
δlk

8V0

35

2

2k + 1
δk4 −

16V0

21

2

2k + 1
δk2 +

8V0

15

2

1
δ0k = AkR

k 2

2k + 1
8V0

35

2

9
δk4 −

16V0

21

2

5
δk2 +

8V0

15

2

1
δ0k = AkR

k 2

2k + 1

The left side vanishes unless k = 0, 2 or 4, and in these cases we have

A0 =
8V0

15

A2 = − 16V0

21R2

A4 =
8V0

35R4

The full solution everywhere inside the sphere is found by putting these coefficients back into the general
form, giving the final potential as

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

= A0r
0P0 (cos θ) +A2r

2P2 (cos θ) +A4r
4P4 (cos θ)

=
8V0

15
r0P0 (cos θ)− 16V0

21R2
r2P2 (cos θ) +

8V0

35R4
r4P4 (cos θ)

= 8V0

(
1

15
− 2r2

21R2
P2 (cos θ) +

r4

35R4
P4 (cos θ)

)
= V0

(
8

15
− 16r2

21R2
P2 (cos θ) +

8r4

35R4
P4 (cos θ)

)
We immediately verify that if we set r = R and use the form of sin4 θ in terms of Legendre polynomials, we
recover the boundary condition. At the center of the sphere, we find (setting r = 0) that the potential is
V (0) = 8

15V0.
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Aside: Verify Theorem 3.1.4 If we integrate the potential over the surface of the sphere (using Wolfram
integrator),

π̂

0

sin θdθ

2πˆ

0

dϕV0 sin4 θ = 2πV0

π̂

0

sin5 θdθ

= 2πV0

(
−5

8
cos θ +

5

48
cos3 θ − 1

80
cos 5θ

)∣∣∣∣π
0

= 2πV0

((
5

8
− 5

48
+

1

80

)
−
(
−5

8
+

5

48
− 1

80

))
= 2πV0

(
5

8
− 5

48
+

1

80
+

5

8
− 5

48
+

1

80

)
= 2πV0

(
5

4
− 5

24
+

1

40

)
= 2πV0

(
150

120
− 25

120
+

3

120

)
= 2πV0

(
128

120

)
=

32π

15
V0

so that the potential at the center of the sphere is

Vcenter =
8

15
V0 =

1

4πR2

π̂

0

2πˆ

0

V (R, θ, ϕ)R2 sin θdθdϕ

as required by the theorem of section 3.1.4 in Griffiths.

Outside:

The exterior solution is similar, but this time the boundary conditions are

V (∞) = 0

V (R, θ, ϕ) = V0 sin4 θ

which means that we must have Al = 0 for all l. The second condition now reads

V0

(
8

35
P4 (x)− 16

21
P2 (x) +

8

15
P0 (x)

)
=

∞∑
l=0

Bl
Rl+1

Pl (x)

so we need only replace AlRl of the interior solution by Bl
Rl+1 . This gives

V (r, θ) = 8V0

(
R

15r
− 2R3

21r3
P2 (cos θ) +

R5

35r5
P4 (cos θ)

)

2.4 Example: Extending the solution for a disk
Here is a somewhat different example of the use of the series solution and uniqueness. Although this is
not a boundary condition in the usual sense, it is still enough information to find all of the coefficients
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and construct the potential everywhere. We have found previously that the potential on the z-axis above a
circular disk of radius R lying in the xy-plane is

V (z) =
σ

2ε0

(√
z2 +R2 − z

)
Since we have axial symmetry, the full solution

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)

must agree with this when we set z = r and θ = 0:

σ

2ε0

(√
z2 +R2 − z

)∣∣∣∣
z=r

=

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl (cos θ)|θ=0

σ

2ε0

(√
r2 +R2 − r

)
=

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
where we have used Pl (cos 0) = Pl (1) = 1, for all l.

The problem is simplest for the region where r > R. In this case, we may expand the square root in a
Taylor series as √

r2 +R2 = r

√
1 +

R2

r2

We need the Taylor series for (1 + x)
1/2 for small x. Looking at the first few derivatives

f (x) = (1 + x)
1/2

f (1) (x) =
1

2
(1 + x)

−1/2

f (2) (x) =

(
−1

2

)
1

2
(1 + x)

−3/2

f (3) (x) =

(
−3

2

)(
−1

2

)
1

2
(1 + x)

−5/2

This is enough to see the pattern. After k differentiations, we will have

f (k) (x) = − (−1)
k

2k
(2k − 3) (2k − 5) · · · 1 (1 + x)

−(2k−1)/2

= − (−1)
k

2k
(2k − 3)!

(2k − 2) (2k − 4) (2k − 6) · · · 2
(1 + x)

−(2k−1)/2

= − (−1)
k

2k
(2k − 3)!

2k−1 (k − 1) (k − 2) (k − 3) · · · 1
(1 + x)

−(2k−1)/2

= − (−1)
k

2k
(2k − 3)!

2k−1 (k − 1)!
(1 + x)

−(2k−1)/2

so the full Taylor series is

(1 + x)
1/2

= 1 +
1

2
x−

∞∑
k=2

(−1)
k

22k−1

(2k − 3)!

(k − 1)!
xk
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Setting x = R2

r2 , the right side of our equality therefore becomes

σ

2ε0

(
r

(
1 +

1

2

R2

r2
−
∞∑
k=2

(−1)
k

22k−1

(2k − 3)!

(k − 1)!

R2k

r2k

)
− r

)
=

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
σ

ε0

(
R2

4r
−
∞∑
k=2

(−1)
k

22k

(2k − 3)!

(k − 1)!

R2k

r2k−1

)
=

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
This means that Al = 0 for all l, and for the Bl we match term by term to find:

B0 =
σR2

4ε0

− σ
ε0

∞∑
k=2

(−1)
k

22k

(2k − 3)!

(k − 1)!

R2k

r2k−1
=

∞∑
l=1

Bl
rl+1

Note that we have only odd powers of r on the left, so only even l will occur on the right. Let l = 2k− 2 on
the right. Then for all k > 1

− σ
ε0

∞∑
k=2

(−1)
k

22k

(2k − 3)!

(k − 1)!

R2k

r2k−1
=

∞∑
k=2

B2k−2

r2k−1

− σ
ε0

(−1)
k

22k

(2k − 3)!

(k − 1)!
R2k = B2k−2

All odd Bl vanish. The potential everywhere for r > R (including off axis!) is therefore

V (r, θ) =
σR2

4ε0r
− σR

ε0

∞∑
k=2

(−1)
k

22k

(2k − 3)!

(k − 1)!

(
R

r

)2k−1

P2k (cos θ)

The solution for r < R may be found in a similar way, although it requires two subcases.

3 Exercises

3.1 Separation of variables
Separate the Laplace equation in cylindrical coordinates to find the differential equations for three functions.
Solve the equations for the ϕ and z directions. The radial equation gives Bessel functions.

3.2 Legendre polynomials
Suppose Θ (θ) takes the form

Pl (x) = a0 + a1x+ a2x
2 + a3x

3

Substitute into the Legendre equation, eq.(2) and find all allowed combinations of solutions for a1, a2, a3 and
l. This will lead you to P0, P1, P2 and P3. Choose the normalizations so that Pl (1) = 1.

3.3 Boundary conditions on a sphere
Consider a sphere of radius R held at a potential

V (R, θ) = V0 cos θ sin2 θ

Find the potential everywhere, both inside and outside the sphere.
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