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1 Separation of variables in Cartesian coordinates
The separation of variables technique is more powerful than the methods we have studied so far. The
approach begins with a simplifying assumption, that the potential may be written as a product (or in some
cases, the sum) of some simpler functions. The procedure is the same for other coordinate systems. For the
case of Cartesian coordinates, the solution is particularly simple.

The Laplace equation in Cartesian coordiates is

∇2V (x, y, z) = 0

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0

1.1 Step 1:
We assume a solution of the form

V (x, y, z) = X (x)Y (y)Z (z)

Substitution gives

Y Z
d2X

dx2
+XZ

d2Y

dy2
+XY

d2Z

dz2
= 0

where the partial derivatives now become ordinary.

1.2 Step 2:
Next, divide by V = XY Z. This gives

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
= 0

and each terms is now a function of only one variable. Taking the partial derivative of the whole expression
with respect to x gives

0 =
∂

∂x

(
1

X

d2X

dx2

)
+

∂

∂x

(
1

Y

d2Y

dy2

)
+

∂

∂x

(
1

Z

d2Z

dz2

)
=

∂

∂x

(
1

X

d2X

dx2

)
+ 0 + 0

showing that 1
X
d2X
dx2 must be independent of x, hence constant. The same holds if we take y- or z-derivatives:
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∂

∂y

(
1

Y

d2Y

dy2

)
= 0

∂

∂z

(
1

Z

d2Z

dz2

)
= 0

This means that each of the three terms must be constant,

1

X

d2X

dx2
= a

1

X

d2X

dx2
= b

1

Z

d2Z

dz2
= c

and the constants must add to zero:
a+ b+ c = 0

1.3 Step 3:
Solve the equations. It is easiest to choose the constants to be in the form ±α2 since the solutions are either
exponential or sinusoidal. If we choose a = −α2 then

1

X

d2X

dx2
= −α2

d2X

dx2
+ α2X = 0

and we immediately have the familiar solution,

X = A sinαx+B cosαx

If we choose a = +α2 instead then the equation is

d2X

dx2
− α2X = 0

and the solution is
X = Aeαx +Be−αx

Because a + b + c = 0, both signs must occur. If two of the constants are negative (giving oscillating
solutions) then the third must be positive and will have exponential solutions. If two of the signs are
positive then there are two directions with exponential solutions. Then the third constant is negative and
has oscillating solutions.

Choose the signs so that the solutions match your boundary conditions.
Suppose we choose

a = −α2

b = −β2

c = α2 + β2

Then
X = A sinαx+B cosαx
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and
Y = C sinβy +D cosβy

while Z satisfies
d2Z

dz2
−
(
α2 + β2

)
Z = 0

For convenience, define γ2 = α2 + β2, so that

d2Z

dz2
− γ2Z = 0

It is easy to see that e±γz both give solutions, so the general solution is the arbitrary linear combination

Z = E′eγz + F ′e−γz

It is often more useful to use the symmetric and antisymmetric combinations,

cosh γz =
eγz + e−γz

2

sinh γz =
eγz − e−γz

2

Then

eγz = cosh γz + sinh γz

e−γz = cosh γz − sinh γz

and our solution is

Z = E′ (cosh γz + sinh γz) + F ′ (cosh γz − sinh γz)

= (E′ + F ′) cosh γz + (E′ − F ′) sinh γz

Renaming the constants, E = E′ + F ′ and F = E′ − F ′, this is just

Z = E cosh γz + F sinh γz

1.4 Step 4:
Write the full solution as a linear combination. For any particular values of α and β the solution is

Vα,β (x, y, z) = (A sinαx+B cosαx) (C sinβy +D cosβy) (E cosh γz + F sinh γz)

Since the Laplace equation is linear, we may build the general solution for V as a sum of such solutions for
different α and β. The leading constants may be different for each choice of α and β, so we have

V (x, y, z) =
∑
α,β

(Aα,β sinαx+Bα,β cosαx) (Cα,β sinβy +Dα,β cosβy) (Eα,β cosh γz + Fα,β sinh γz)

However, this latter form is too general for most problems. It is simpler to choose some of the constants to
satisfy the boundary conditions automatically.

2 Fitting boundary conditions in Cartesian coordinates
Suppose we wish to find the potential everywhere inside a conducting cube of side L. Let the boundary be
held at zero potential except for the top of the box, which is held at V0. This means that in the x-direction,
the potential starts and ends at zero:

V (0, y, z) = 0

V (L, y, z) = 0
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2.1 Satisfying the first five conditions
The easiest way to satisfy this condition is to choose the sinusoidal solutions in the x-direction,

X (x) = A sinαx+B cosαx

Then the boundary conditions require

V (0, y, z) = X (0)Y (y)Z (z)

V (L, y, z) = X (L)Y (y)Z (z)

for all y and z. Therefore,

0 = X (0)

= A sin 0 +B cos 0

= B

With B = 0 we look at the second condition,

0 = X (L)

= A sinαL+B cosαL

= A sinαL

Since A = 0 would make the entire potential vanish, we must restrict the possible values of α instead. The
boundary condition is satisfied if and only if

αL = nπ

α =
nπ

L

for any integer n. We conclude
Xn (x) = An sin

nπx

L

Notice that the constant An may depend on n.
The y-direction is completely analogous. We require vanishing potential on both sides,

V (x, 0, z) = 0

V (x, L, z) = 0

for all x and z, and this is achieved only if

Y (0) = 0

Y (L) = 0

Again, we choose an oscillating solution and we find that

Ym (y) = Cm sin
mπy

L

The integer m is independent of the integer n.
Finally, we fit the boundary condition for Z (z). Remembering that the solution in this direction must

be exponential, we write

Z = E cosh γz + F sinh γz
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where γ = +

√(
nπ
L

)2
+
(
mπ
L

)2
= + π

L

√
n2 +m2. With the potential on the top of the box equal to V0, the

boundary conditions for z are

V (x, y, 0) = 0

V (x, y, L) = V0

Since these relations hold for all x and y, they must be satisfied by our choice of Z (0) and Z (L). The z = 0
condition is completely satisfied by

0 = Z (0)

= E

This leaves our complete solution in the form

V (x, y, z) =

∞∑
n=1

∞∑
m=1

An sin
nπx

L
Cm sin

mπy

L
Em,n sinh γz

=

∞∑
n=1

∞∑
m=1

(AnCmEm,n) sin
nπx

L
sin

mπy

L
sinh γz

=

∞∑
n=1

∞∑
m=1

Anm sin
nπx

L
sin

mπy

L
sinh γz

where it is sufficient to set Anm = AnCmEm,n since we only have a single overall constant for each pair m,n.

2.2 The final solution
Now comes the tricky part. We have one final boundary condition, V (x, y, L) = V0, and we no longer have
the freedom to satisfy it by choosing γ. Instead, we must choose the constants Amn so that

V0 =

∞∑
n=1

∞∑
m=1

(Anm sinh γL) sin
nπx

L
sin

mπy

L

for all x and all y. This is a double Fourier series. To solve, we use the orthogonality property of the sine
function (see below for the explicit integrations),

L̂

0

sin
n1πx

L
sin

n2πx

L
dx =

L

2
δn1n2

Consider the x-direction first. Multiply both sides of the boundary condition by sin kπx
L and integrate x

from 0 to L,

L̂

0

V0 sin
kπx

L
dx =

∞∑
n=1

∞∑
m=1

(Anm sinh γL) sin
mπy

L

L̂

0

sin
nπx

L
sin

kπx

L
dx

The left side is easy to integrate (in this example!), while on the right we use orthogonality:

−LV0
kπ

cos
kπx

L

∣∣∣∣L
0

=

∞∑
n=1

∞∑
m=1

(Anm sinh γL) sin
mπy

L

L

2
δkn
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Performing the sum over all n, only one term survives,

−LV0
kπ

cos kπ +
LV0
kπ

cos 0 =
L

2

∞∑
m=1

(
Akm sinh

√
k2 +m2L

)
sin

mπy

L

LV0
kπ

(
1− (−1)k

)
=

L

2

∞∑
m=1

(
Akm sinh

√
k2 +m2L

)
sin

mπy

L

Now repeat the procedure for the y direction. Multiply by sin jπy
L and integrate,

LV0
kπ

(
1− (−1)k

) L̂

0

sin
jπy

L
dy =

L

2

∞∑
m=1

(
Akm sinh

√
k2 +m2L

) L̂

0

sin
mπy

L
sin

jπy

L
dy

LV0
kπ

(
1− (−1)k

)[
− L

jπ
cos

jπy

L

]L
0

=

(
L

2

)2 ∞∑
m=1

(
Akm sinh

√
k2 +m2L

)
δjm

LV0
kπ

(
1− (−1)k

)( L

jπ
− L

jπ
cos jπ

)
=

(
L

2

)2

Akj sinh
√
k2 + j2L

4V0
jkπ2

(
1− (−1)k

)(
1− (−1)j

)
= Akj sinh

√
k2 + j2L

Since we can carry out these steps for any values of j and k, we have found all of the coefficients Akj ,

Akj =
4V0

jkπ2 sinh
√
k2 + j2L

(
1− (−1)k

)(
1− (−1)j

)
Substituting these (constant!) values into the potential,

V (x, y, z) =

∞∑
n=1

∞∑
m=1

4V0

mnπ2 sinh
(√
n2 +m2L

) (1− (−1)n) (1− (−1)m) sin
nπx

L
sin

mπy

L
sinh γz

This simplifies to sums over the odd terms since

(1− (−1)n) =

{
0 n even

2 n odd

and we may write

V (x, y, z) =
16V0
π2

∞∑
n=odd

∞∑
m=odd

1

mn

sinh
√
n2 +m2z

sinh
√
n2 +m2L

sin
nπx

L
sin

mπy

L

This is our final potential.

2.3 Orthogonality of sine functions
We evaluate the integrals

L̂

0

sin
n1πx

L
sin

n2πx

L
dx
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First, when n1 and n2 are different, we use the sum and difference formulas to write

L̂

0

sin
n1πx

L
sin

n2πx

L
dx =

1

2

L̂

0

[
cos
(n1πx

L
− n2πx

L

)
− cos

(n1πx
L

+
n2πx

L

)]
dx

=
1

2

[
L

π (n1 − n2)
sin
(πx
L

(n1 − n2)
)
− L

π (n1 + n2)
sin
(πx
L

(n1 + n2)
)]L

0

=
1

2

(
L

π (n1 − n2)
sin (π (n1 − n2))−

L

π (n1 + n2)
sin (π (n1 + n2))−

L

π (n1 − n2)
sin (0)− L

π (n1 + n2)
sin (0)

)
= 0

so the integral vanishes. However, when n1 = n2,

L̂

0

sin
n1πx

L
sin

n2πx

L
dx =

L̂

0

sin2
n1πx

L
dx

=
1

2

L̂

0

(
1− cos2

n1πx

L
+ sin2

n1πx

L

)
dx

=
1

2

L̂

0

(
1− cos

2n1πx

L

)
dx

=
1

2

[
x− L

2n1π
sin

2n1πx

L

]L
0

=
L

2

We summarize these integrals by writing

L̂

0

sin
n1πx

L
sin

n2πx

L
dx =

L

2
δn1n2

3 Example
Consider the same cube as in the example above, and let V = 0 on the sides and bottom as before, but
suppose the potential on the top is

V (x, y, L) = V0

(
sin

πx

L
− 4

3
sin3

πx

L

)
The steps are the same as above up to the final integration. At z = L, we must satisfy

V0

(
sin

πx

L
− 4

3
sin3

πx

L

)
=

∞∑
n=1

∞∑
m=1

(Anm sinh γL) sin
nπx

L
sin

mπy

L

and the Fourier series in the y-direction is found as above to reduce this to

2V0
kπ

(
1− (−1)k

)(
sin

πx

L
− 4

3
sin3

πx

L

)
=

∞∑
n=1

(Ank sinh γL) sin
nπx

L
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At this point we could multiply by sin lx and integrate. However, in this case we may write the left hand
side using trigonometric identities as

sin
πx

L
− 4

3
sin3

πx

L
=

1

3
sin

3πx

L

Since the functions sin nπx
L are mutually orthogonal, we immediately see that

2V0
3kπ

(
1− (−1)k

)
sin

3πx

L
=

∞∑
n=1

(Ank sinh γL) sin
nπx

L

requires all of the Ank to vanish except for n = 3. For A3k, we have

2V0
3kπ

(
1− (−1)k

)
sin

3πx

L
= A3k sinh γL sin

3πx

L

A3k =
2V0

3kπ sinh γL

(
1− (−1)k

)
and the unique solution for the potential is

V (x, y, z) =
∑
modd

4V0
3mπ

sinh γz

sinh γL
sin

3πx

L
sin

mπy

L

This simplification works any time the potential on the left can be easily written in terms of Fourier series.
The same approach works in other coordinate systems when the potential on a given boundary can be

written in terms of the orthogonal functions of the solution.

4 Exercise
Repeat the problem of a cube, but this time center the cube in the z-direction and let both the top and the
bottom have potential V0. Now the boundary conditions are:

V (0, y, z) = 0

V (L, y, z) = 0

V (x, 0, z) = 0

V (x, L, z) = 0

V

(
x, y,−L

2

)
= V0

V

(
x, y,+

L

2

)
= V0

Notice that cosh γz is symmetrical in z, so that cosh (γz) = cosh (−γz). Suggestion: work through all the
details rather than just copying the calculations above.
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