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1 Conservation of energy in the presence of electrostatic forces
Suppose a particle of mass m and charge Q is in an electric field E (x). Then it experiences a force,
F (x) = QE (x) and we may write Newton’s second law, F (x) = ma, to find its motion,

QE (x) = m
dv

dt

To integrate this, we take the dot product with v = dx
dt ,

QE (x) · dx
dt

= mv · dv
dt

QE (x) · dx = mv · dv

Integrating, along a given path C, with endpoints at x0 and x,

Q

x̂

C,x0

E (x) · dx = m

v̂

C,v0

v · dv

we can work the second integral exactly, since

v̂

v0

v · dv =

v̂

v0

vxdvx +

v̂

v0

vydvy +

v̂

v0

vzdvz

=
1

2

(
v2x + v2y + v2z

)∣∣v
v0

=
1

2
v2 − 1

2
v2
0

We therefore have the change in kinetic energy equal to Q times the line integral of the electric field:

Q

x̂

C,x0

E (x) · dx =
1

2
mv2 − 1

2
mv2

0

In general, such line integrals depend on the curve C. However, consider any two curves, C1 and C2, between
the same endpoints. The difference in the integrals is given by

∆ =

x̂

C2,x0

E (x) · dx−
x̂

C1,x0

E (x) · dx
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=

x̂

C2,x0

E (x) · dx +

x0ˆ

−C1,x

E (x) · dx

=

˛

C2−C1

E (x) · dx

where we integrate from x0 to x along C2 then backwards from x to x0 along −C1 to form a closed loop.
But in the previous section, we showed that all such integrals vanish for the electric field. Therefore, ∆ = 0,
and the integral from x0 to x is independent of path. This allows us to define the potential energy of the
electric force,

U (x) = −Q
x̂

x0

E (x) · dx

The potential energy is a function because it has a single, well-defined value at each point x. We therefore
have the energy theorem,

−U (x) + U (x0) =
1

2
mv2 − 1

2
mv2

0

1

2
mv2 + U (x) = U (x0) +

1

2
mv2

0

since the quantity

E = U (x) +
1

2
mv2

retains the same value throughout the motion.

2 Energy of a charge configuration

2.1 Discrete charges
Suppose we bring one charge q1 close to another, q2. Then the energy of the pair is

W = q1V2

or equivalently
W = q2V1

Since, for a single point charge, V = 1
4πε0

q
r , both of these give

W12 =
1

4πε0

q1q2
r12

where r12 is the distance between the charges.
The potential of the pair of charges is now

V (x) =
1

4πε0

q1
r1x

+
1

4πε0

q2
r2x

where r1x and r2x are the distances from each of the charges to the point where we want to know the
potential. Therefore, bringing in a third charge, the energy will be the energy to bring in the first two,
together with q3V (x3), so

W123 =
1

4πε0

q1q2
r12

+
1

4πε0

q1q3
r13

+
1

4πε0

q2q3
r23
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We can iterate this procedure, in a proof by induction. Noticing that we have a sum over all pairs of
charges, we suppose, after we have brought together n− 1 charges, the energy is

Wn−1 =
1

4πε0

n−1∑
pairs

qiqj
rij

while the potential will be

Vn−1 (x) =
1

4πε0

n−1∑
i=1

qi
rix

so we have

Wn =
1

4πε0

n−1∑
pairs

qiqj
rij

+ qnVn−1 (x)

=
1

4πε0

n−1∑
pairs

qiqj
rij

+
1

4πε0

n−1∑
i=1

qiqn
rin

=
1

4πε0

n∑
pairs

qiqj
rij

which is the form we assumed for n− 1, extended to n. This is therefore the form for all n.
Notice that the sum is over all pairs of charges. We can write this as a double sum,

n∑
pairs

qiqj
rij

=

n∑
i=1

i−1∑
j=1

qiqj
rij

We don’t sum over an i = j term. Since we would have the same thing if we summed over all j > i instead
of j < i,

n∑
pairs

qiqj
rij

=

n∑
i=1

n∑
j=i+1

qiqj
rij

we can take both together, divide by 2, and just skip i = j,
n∑

pairs

qiqj
rij

=
1

2

∑
all i

∑
all j 6=i

qiqj
rij

and the energy is

Wn =
1

8πε0

∑
all i

∑
all j 6=i

qiqj
rij

2.2 Continuum distributions of charge
The continuum case is completely analogous. Rewirte Wn as

Wn =
1

2

∑
all j 6=i

qj
∑
all i

qi
4πε0rij

and take the limit as the distribution becomes continuous, with qi → ρ (x′) d3x′ and qj → ρ (x) d3x. Then,
taking the limit of one sum at a time,

W =
1

2

∑
all j 6=i

qj

ˆ
ρ (x′) d3x′

4πε0 |x− x′|
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=
1

2

∑
all j 6=i

qjV (x)

=
1

2

ˆ
ρ (x)V (x) d3x

Now take the limit as the second sum becomes continuous.
We can write this entirely in terms of the field. Since ρ (x) vanishes where there is no charge, we may

take the integral over all space. Then, using the differential form of Gauss’ law, replace the charge density,

W =
ε0
2

ˆ

V

(∇ ·E)V (x) d3x

Now remember that the divergence of a function times a vector is ∇ · (VE) = ∇V · E + V∇ · E so we can
write

V∇ ·E = ∇ · (VE)−∇V ·E

Therefore

W =
ε0
2

ˆ

V

(∇ ·E)V (x) d3x

=
ε0
2

ˆ

V

(∇ · (VE)−∇V ·E) d3x

=
ε0
2

ˆ

V

∇ · (VE) d3x− ε0
2

ˆ

V

∇V ·Ed3x

Using the divergence theorem on the first term,

ε0
2

ˆ

V

∇ · (VE) d3x =
ε0
2

˛

S

VE · nd3x

where the surface integral is at infinity. Assuming the field drops to zero at infinite distance, this term
vanishes and we are left with

W = −ε0
2

ˆ

V

∇V ·Ed3x

=
ε0
2

ˆ

V

E ·Ed3x

We interpret the integrand,
w =

ε0
2
E ·E

as the energy density of the electric field. Once again, we are able to associate measurable properties directly
with the electric field.

3 Force on a charged surface
Suppose we have a charged surface with charge density σ (x). Then we know that

Eout −Ein =
σ

ε0
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The surface cannot put a net force on itself, so we need to find the external electric field – the field that
would be present without the surface. Treating the surface in a small region as planar, we know that the
charge density produces a field Eσ = ± σ

ε0
n̂ above and below the surface, so

Eout = Eext +
σ

ε0

Ein = Eext −
σ

ε0

Solving for Eext, we have

Eext =
1

2
(Eout + Ein)

The force on an infinitesimal area A of the surface is then

F = QEext

= σA · 1

2
(Eout + Ein)

and the force per unit area is
f =

σ

2
(Eout + Ein)

For a conductor, we know that Eout = σ
ε0

and Ein = 0 so this becomes f = σ2

2ε0
n. This gives an outward

pressure on the conductor.
Notice that this force can be quite large. For a spherical conductor with surface area of 1 square meter,

charged with 1 Coulomb, the outward force is

F =
σ2A

2ε0
r̂

=
1

2 · 8.85× 10−12
r̂

(
C2

m4
m2Nm

2

C2

)
= 5.65× 1010N r̂

4 Capacitance
Capacitance can be defined for any system of conductors. Here we define the capacitance of a pair of con-
ductors held at equal but opposite charges, ±Q. Essentially, the capacitance characterizes those conductors’
ability to hold charge.

We put together three facts:

1. Each conductor is an equipotential

2. The potential between the two conductors is

∆V (x) = −
(+)ˆ

(−)

E · dl

This won’t depend on the curve of integration, as long as it starts on the −Q conductor and ends on
the +Q. Since the field points from the positive to the negative, this ∆V is always positive.

3. The electric field is proportional to Q. To see this, remember superposition. Consider duplicating the
original system and overlaying the pair to get the same two conductors with twice the charge. The
electric field will also double.
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Since ∆V is proportional to E and E is proportional to Q, the potential difference between the conductors
is proportional to Q,

∆V = aQ

where a = 1
C is the proportionality constant. The amount of charge the system can hold for a given potential

difference is then
C =

1

a
=

Q

∆V

and this is called the capacitance.

4.1 Example: parallel plate capacitor
Consider two square plane conductors of side L held a distance d apart. The distance d is much less than L
so we may neglect the slight deviation of the potential at the edges of the planes. Find the capacitance.

To find the capacitance, we need to find how the electric potential between the plates varies with the
charge on the plates.

We have found that the electric field near a (nearly) infinite plane coincident with the xy-plane is

E+ (z) =

{
σ
2ε0

k̂ z > 0

− σ
2ε0

k̂ z < 0

Therefore, if we have a second plane at z = d and charge per unit area −σ, the electric field of the second
plane will be

E− (z) =

{
− σ

2ε0
k̂ z > d

σ
2ε0

k̂ z < d

and because of superposition we may simply add these fields to get the total field at any point, E = E++E−.
This results in three regions:

E (z) =


0 z > d
σ
ε0
k̂ 0 < z < d

0 z < 0

For the large but finite planes of the problem, we assume this same result, with the total charge on each
plate given by Q = ±σL2, so that

E (z) =


0 z > d
Q
ε0L2 k̂ 0 < z < d

0 z < 0

Now integrate the electric field to find the potential,

V (z) = −
ˆ

E · dl

Since the potential does not depend on the path chosen, we may choose any convenient path. The easiest
is to let dl = k̂dz. We integrate from the negatively charged plate and integrate to the positively charged
plate,

∆V = −
0ˆ

d

(
E · k̂

)
dz

= − Q

ε0L2

0ˆ

d

(
k̂ · k̂

)
dz

=
Qd

ε0L2
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Notice that the result is linear in the charge on the plates, as expected. The charge per unit potential is
therefore

C =
ε0L

2

d

This is a measure of the charge carrying capability of the plates. It increases as the plates become larger
and closer together.

5 Exercises
For the following two problems use any method you like to find the potential difference between the shells.
Which method is easiest?

5.1 Cylindrical capacitor
Find the capacitance of a pair of coaxial cylindrical shells of length L and of radii R1 and R2. Let R2 > R1

and L� R2 Neglect edge effects.

5.2 Spherical capacitor
Find the capacitance of a pair of concentric spherical shells of radii R1 and R2 with R2 > R1.
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