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1 The differential form of Gauss’s law
Starting from the integral form of Gauss’s law, we treat the charge as a continuous distribution, ρ (x). Then,
letting V be the volume enclosed by the arbitrary closed surface S, the total charge in V is

Qtotal enclosed =

ˆ

V

ρ (x) d3x

This allows us to write Gauss’s Law in differential form. Substituting the integral for Qtotal,˛

S

E · n̂ d2x =
1

ε0

ˆ

V

ρ (x) d3x

we apply the divergence theorem to the left side to getˆ

V

∇ ·E d3x =
1

ε0

ˆ

V

ρ (x) d3x

Combining the integrals, we have ˆ

V

[
∇ ·E− ρ (x)

ε0

]
d3x = 0

where V is an arbitrary volume.
We now prove by contradiction that the integrand must be zero everywhere in V . Suppose there is some

point P in V where ∇ · E − ρ(x)
ε0

> 0. Then, since we expect ∇ · E − ρ(x)
ε0

to be continuous, there must
be a region around P over which ∇ · E − ρ(x)

ε0
remains positive. Take the arbitrary volume V to be this

region. Then the integral is necessarily positive, and we have a contradition. A similar argument holds if
∇ · E − ρ(x)

ε0
< 0, so we must have ∇ · E − ρ(x)

ε0
= 0 at P. Since this argument holds for any point in the

region, the integrand must vanish everywhere, and we have

∇ ·E =
1

ε0
ρ (x)

This is the differential form of Gauss’s law. It will be extremely useful once we also know about the curl of
E.

2 The curl of the electric field

2.1 The curl using Stokes’ theorem
Again consider the electric field of a point charge at the origin,

E =
1

4πε0

Q

r2
r̂
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Consider the integral of E · dl along an arbitrary curve, C,
ˆ

C

E · dl =
Q

4πε0

ˆ

C

1

r2
r̂ · dl

=
Q

4πε0

rfˆ

ri

1

r2
dr

=
Q

4πε0

(
− 1

rf
+

1

ri

)
where ri and rf are the initial and final radii of the curve.

Now suppose the curve is a closed loop. Then ri = rf and the integral vanishes, regardless of the closed
curve, C, ˛

C

E · dl =
Q

4πε0

˛

C

1

r2
dr = 0

Notice that this result depends only on the relative position of the curve and the charge, not on the charge
being at the origin.

Now, suppose there is more than one charge. Since the electric field E is the sum of the fields from each
charge, Ei, and the line integral for each vanishes, the sum vanishes,

˛

C

E · dl =

n∑
i=1

˛

C

Ei · dl = 0

as long as the curve doesn’t pass through any of the charges. The result holds equally well in the limit of a
charge density, and we conclude that ˛

C

E · dl = 0

for any curve C in empty space.
Now apply Stokes’ theorem. We have

0 =

˛

C

E · dl

=

¨

S

(∇×E) · n d2x

where S is now an arbitrary surface with boundary C. This can only be the case for all surfaces if the
integrand vanishes. Moreover, since n is arbitrary as well, we have

∇×E = 0

in free space for the electric field of any static charge distribution.
The vanishing of closed line integrals of the electric field,

¸
C
E · dl = 0, (or equivalently, the vanishing

curl of E, since Stokes’ theorem makes these statements equivalent), means that we may define a function
from the integral of the electric field along curves,

V (x) = −
x̂

x0

E · dl
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This integral is independent of our choice of the path of integration, and therefore depends only on the
endpoint x. To see this, subtract the integral along any two curves between the same endpoints,

VC1
(x)− VC2

(x) = −
x̂

x0,C1

E · dl +

x̂

x0,C2

E · dl

Since integrating along C1 from x0 to x just gives the negative of the integral along −C1 from x to x0, we
may combine the two integrals on the right into a single closed line integral, which then vanishes:

−
x̂

x0,C1

E · dl +

x̂

x0,C2

E · dl =

˛

C2−C1

E · dl = 0

Therefore, VC1
= VC2

for any two paths between the same endpoints, and V (x) is a function.
V (x) is called the electric potential. From it, we may find the electric field by taking the gradient,

E = −∇V (x) (1)

2.2 An alternative proof
Consider the gradient of 1

|x−xi| ,

∇ 1

|x− xi|
=

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
1√

(x− xi)2 + (y − yi)2 + (z − zi)2

= −1

2

1[
(x− xi)2 + (y − yi)2 + (z − zi)2

]3/2 (î ∂∂x + ĵ
∂

∂y
+ k̂

∂

∂z

)[
(x− xi)2 + (y − yi)2 + (z − zi)2

]

= −1

2

1[
(x− xi)2 + (y − yi)2 + (z − zi)2

]3/2 [2 (x− xi) î + 2 (y − yi) ĵ + 2 (z − zi) k̂
]

= − 1[
(x− xi)2 + (y − yi)2 + (z − zi)2

]3/2 [(x− xi) î + (y − yi) ĵ + (z − zi) k̂
]

= − x− xi

|x− xi|3

Using this, we may write the electric field of a charge qi at an arbitrary point xi as

Ei (x) =
qi

4πε0

x− xi

|x− xi|3

= −∇ qi
4πε0 |x− xi|

Now suppose we have a collection of charges, qi, i = 1, . . . , N . Then by superposition, the total electric field
is

E (x) = Ei (x)

= −
N∑
i=1

∇ qi
4πε0 |x− xi|

= −∇
(

N∑
i=1

qi
4πε0 |x− xi|

)
(2)
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Since the curl of the gradient of any function vanishes, we immediately have

∇×E = 0

for any electric field.
This approach gives us an expicit formula for finding the electric potential. Comparing eqs.(1) and (2)

we see that for any distribution of charges,

V (x) =
1

4πε0

N∑
i=1

qi
|x− xi|

In the continuum limit, this behaves just like the electric field and we have

V (x) =
1

4πε0

ˆ

V

ρ (x′) d3x′

|x− x′|

This scalar integration is generally easier than the vector integration for finding the electric field directy.
Once we have the potential, we easily find the electric field using eq.(1).

The definition of the electric potential allows us to choose an arbitrary reference point for the zero of the
potential. Starting again from the integral for the potential, we substitute the integral for the electric field,

V (x) = −
x̂

x0

E (x′′) · dx′′

= − 1

4πε0

x̂

x0

ˆ
d3x′ρ (x′)

x′′ − x′

|x′′ − x′|3
· dx′′

= − 1

4πε0

ˆ
d3x′ρ (x′)

x′ˆ

x0

x′′ − x′

|x′′ − x′|3
· dx′′

Now, interchanging the order of integration and using
´ x′

x0

x′′−x′

|x′′−x′|3 · dx
′′ = − 1

|x−x′| , the electric potential
becomes

=
1

4πε0

ˆ
ρ (x′)

(
1

|x− x′|
− 1

|x0 − x′|

)
d3x′

Frequently, we assume the reference point is at infinity. In this case we take x0 → ∞ and the potential is
simply

V (x) =
1

4πε0

ˆ
ρ (x′) d3x′

|x− x′|

3 Maxwell’s equations for electrostatics
While the curl of E maybe be different from zero in the presence of a changing magnetic field, Maxwell’s
equations for electrostatics reduce to

∇ ·E =
1

ε0
ρ (x)

∇×E = 0 (3)

The Helmholz theorem tells us that knowing the divergence and curl of a vector field, together with boundary
conditions, uniquely determines the field everywhere within the boundary. These equations therefore give a
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complete characterization of the electric field once we specify the charge density ρ (x) in a volume V , and
give boundary conditions on the boundary of V .

As we have seen above, the vanishing curl of E implies the existence of a potential. Furthermore, we may
write the electrostatic equations in terms of the potential, eq.(1). Substituting this into the electrostatic
equations, the curl of the gradient vanishes automatically, while Gauss’s law becomes

∇2V = − 1

ε0
ρ (x) (4)

This is the Poisson equation. Together with boundary conditions, this is gives a unique solution for the
potential, which then determines the electric field. We will devote considerable attention to solving the
Poisson equation. If there are no sources in a given region, ρ (x) = 0, the Poisson equation reduces to the
Laplace equation,

∇2V = 0 (5)

Again, the Laplace equation together with boundary conditions determines the electric potential completely.
The electric field is then found from

E = −∇V (x)

4 Boundary conditions
Frequently, we wish to solve for the electric field in some region which contains or is bounded by surfaces
carrying charges. In such cases, we can solve for the fields on either side of the surface, then use boundary
conditions to match the two solutions. For this, we need to know how the field and potential change when
we cross a charge-carrying surface.

Consider an arbitrary surface with charge density σ (x). Choose a Gaussian surface in the shape of a
tiny cylinder. Make it small enough that

1. The surface is essentially flat, and parallel to the flat faces of the Gaussian surface.

2. The radius of the cylinder is small enough that σ changes only negligibly across the surface contained.

3. The height of the cylinder is much shorter than the diameter, so the field across the side of the cylinder
is negligible.

Then Gauss’ law for the cylinder is just given by

σA

ε0
=

ˆ

top

E · nd2x+

ˆ

bottom

E · (−n) d2x

≈ (Etop −Ebottom) · n|A

In the limit as we shrink the cylinder, we have the change in the normal component of the electric field
across the surface.

E⊥top − E⊥bottom =
σ

ε0

For the component of the electric field tangential to the surface, we use
˛

C

E · dl = 0
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and choose the curve C to be a tiny rectangular loop with short sides of length d piercing the surface and
long sides of length L parallel to it on opposite sides. With the loop small enough that E is essentially
constant along L, we then have

0 =

˛

C

E · dl

≈ E‖topL−E‖bottomL

and therefore,
E‖top = E‖bottom

so the tangential component of the field is constant across the boundary surface.
In the case of a conductor, there is no electric field inside the conductor or the free charges would move.

This means that E‖bottom = 0 and E⊥bottom = 0, so that the field above a conductor is normal to the surface
and given by

Eabove =
σ

ε0
n

Since E = −∇V , we can write this as

−∇V =
σ

ε0
n

−n ·∇V =
σ

ε0

and writing the directional derivative as n ·∇V = ∂V
∂n we have

σ = −ε0
∂V

∂n

so we can find the charge density from the potential.

5 Examples
We consider both discrete and continuous charge distributions.

5.1 Example: Point charge
The potential due to a point charge is immediate from our discussion of the curl. For a charge at the origin,
and for some reference point xi,

V (x;xi) = −
x̂

xi

E · dl

= − Q

4πε0

rˆ

ri

1

r2
r̂ · dl

= − Q

4πε0

(
−1

r
+

1

ri

)
It is often convenient to take the reference point, xi, to lie at an infinite distance so the potential is simply

V (x;xi) =
Q

4πε0r

More generally, for the source charge at the point x0, the potential is

V (x;x0) =
Q

4πε0 |x− x0|
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5.2 Example 2: Multiple point charges
Now consider multiple point charges at locations q1 = 2q, q2 = −q and q3 = 3q located respectively at

x1 = 3̂i

x2 = î + 3ĵ

x1 = 2k̂

The electric potential V (x) at any position x is the linear superposition

V (x) =
1

4πε0

N∑
i=1

qi
|x− xi|

=
1

4πε0

 2q∣∣∣x− 3̂i
∣∣∣ − q∣∣∣x− (̂i + 3ĵ

)∣∣∣ +
3q∣∣∣x− 2k̂

∣∣∣


=
q

4πε0

 2q√
(x− 3)

2
+ y2 + z2

− q√
(x− 1)

2
+ (y − 3)

2
+ z2

+
3q√

x2 + y2 + (z − 2)
2


Notice that we no longer have to keep track of directions.

5.3 Example 3: Infinite line charge
We know the electric field is

E = E (ρ) ρ̂ =
λ

2πε0ρ
ρ̂

so the potential only changes in the ρ̂ direction:

V (ρ) = −
x̂

xi

E · dl

= −
ρˆ

ρ0

λ

2πε0ρ
ρ̂ · dl

= − λ

2πε0

ρˆ

ρ0

dρ

ρ

= − λ

2πε0
ln

ρ

ρ0

Now try it directly from the charge density. In terms of the density per unit length, we have

V (x) =
λ

4πε0

∞̂

−∞

(
1

|x− x′|
− 1

|x0 − x′|

)
dz′

where we keep the reference point arbitrary for the moment. The problem is symmetric about the z-axis,
and is also invariant as we change z, so we may take z = 0. Then integrating, and carefully taking the limit
as z′ →∞

V (x) =
λ

4πε0

∞̂

−∞

(
1√

ρ2 + z′2
− 1√

ρ20 + z′2

)
dz′
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=
λ

4πε0

(
ln
(
z′ +

√
ρ2 + z′2

)
− ln

(
z′ +

√
ρ20 + z′2

))∣∣∣∣∞
−∞

=
λ

4πε0
lim
z′→∞

ln

(√
ρ2 + z′2 + z′√
ρ20 + z′2 + z′

)(√
ρ20 + z′2 − z′√
ρ2 + z′2 − z′

)

=
λ

4πε0
lim
z′→∞

ln


√

ρ20
z′2 + 1− 1√
ρ2

z′2 + 1− 1


=

λ

4πε0
lim
z′→∞

ln

(
ρ20
2z′2 + 1− 1
ρ2

2z′2 + 1− 1

)

=
λ

4πε0
lim
z′→∞

ln

(
ρ20
ρ2

)
=

λ

2πε0
ln

(
ρ0
ρ

)
= − λ

2πε0
ln

(
ρ

ρ0

)

5.4 Example: Midpoint of a finite line charge
For a finite line charge, we no longer can ignore z. Everything is still independent of ϕ and ϕ′. The integral
becomes

V (x) =
λ

4πε0

bˆ

a

1

|x− x′|
dz′

=
λ

4πε0

bˆ

a

1

|ρρ̂ + zk− z′k|
dz′

=
λ

4πε0

bˆ

a

1√
ρ2 + (z − z′)2

dz′

While this is not hard to integrate directly with the substitutions ζ = z− z′ and ζ = ρ sinh θ, it is still easier
to use an online integrator to find

V (x) = − λ

4πε0

(
ln

(√
ρ2 + (z − b)2 + z − b

)
− ln

(√
ρ2 + (z − a)

2
+ z − a

))

= − λ

4πε0
ln


√
ρ2 + (z − b)2 + z − b√
ρ2 + (z − a)

2
+ z − a


Consider the potential at above the midpoint of a segment of length L. At the center, z = 0, so

V = − λ

4πε0
ln


√
ρ2 +

(
L
2

)2 − L
2√

ρ2 +
(
L
2

)2
+ L

2


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For large ρ,

V = − λ

4πε0
ln

ρ
√

1 +
(
L
2ρ

)2
− L

2

ρ

√
+
(
L
2ρ

)2
+ L

2



= − λ

4πε0
ln


√

1 +
(
L
2ρ

)2
− L

2ρ√
1 +

(
L
2ρ

)2
+ L

2ρ



≈ − λ

4πε0
ln

1 + 1
2

(
L
2ρ

)2
− L

2ρ

1 + 1
2

(
L
2ρ

)2
+ L

2ρ


≈ − λ

4πε0
ln

(
1− L

2ρ

1 + L
2ρ

)

≈ − λ

4πε0
ln

((
1− L

2ρ

)(
1− L

2ρ

))
≈ − λ

4πε0
ln

(
1− L

ρ

)
≈ − λ

4πε0

(
−L
ρ

)
=

λL

4πε0ρ

Setting the total charge to Q = λL and taking the gradient, the electric field is

E = −∇V

=
Q

4πε0ρ2
ρ̂

In the opposite limit, the wire looks extremely long. Letting ρ
L � 1, the potential becomes

V = − λ

4πε0
ln

 L
2

√
1 + 4ρ2

L2 − L
2

L
2

√
1 + 4ρ2

L2 + L
2


= − λ

4πε0
ln


√

1 + 4ρ2

L2 − 1√
1 + 4ρ2

L2 + 1


≈ − λ

4πε0
ln

(
1 + 2ρ2

L2 − 1

1 + 2ρ2

L2 + 1

)

≈ − λ

4πε0
ln

(
ρ2

L2

1 + ρ2

L2

)

≈ − λ

4πε0
ln

(
ρ2

L2

(
1− ρ2

L2

))
≈ − λ

4πε0
ln

(
ρ2

L2

)
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= − λ

2πε0
ln
( ρ
L

)
The electric field is then

E = −∇V

=
λ

2πε0ρ
ρ̂

5.5 Circular disk: on axis
Consider a uniformly charged disk of radius R and total charge Q. Compare the direct integration to find
the electric field on the z-axix (problem 2.4) to finding V first then taking the gradient.

5.5.1 Electric field by direct integration

To find the electric field directly by integration, we must compute

E (x) =
1

4πε0

ˆ
ρ (x′)

x− x′

|x− x′|3
d3x′

where the charge density is given by

ρ (x′) =
Q

πR2
δ (z′) Θ (R− ρ′)

Letting x = zk̂ and |x− x′| =
√

(ρ′)
2

+ (z − z′)2, the electric field becomes

E (x) =
1

4πε0

ˆ
Q

πR2
δ (z′) Θ (R− ρ′)

zk̂−
(
ρ′ρ̂′ + z′k̂

)
(

(ρ′)
2

+ (z − z′)2
)3/2 d3x′

=
1

4πε0

Q

πR2

2πˆ

0

dϕ′
∞̂

0

ρ′dρ′
∞̂

−∞

dz′δ (z′) Θ (R− ρ′)
zk̂−

(
ρ′ρ̂′ + z′k̂

)
(

(ρ′)
2

+ (z − z′)2
)3/2

=
1

4πε0

Q

πR2

2πˆ

0

dϕ′
R̂

0

ρ′dρ′
zk̂− ρ′ρ̂′(

(ρ′)
2

+ z2
)3/2

Replacing ρ̂′ = î cosϕ′ + ĵ sinϕ′, the integral over the second term gives

1

4πε0

Q

πR2

2πˆ

0

dϕ′
R̂

0

ρ′dρ′
zk̂− ρ′ρ̂′(

(ρ′)
2

+ z2
)3/2 = − Q

4π2ε0R2

2πˆ

0

dϕ′
R̂

0

ρ′dρ′
ρ′
(̂
i cosϕ′ + ĵ sinϕ′

)
(

(ρ′)
2

+ z2
)3/2

= − Q

4π2ε0R2

î

2πˆ

0

cosϕ′dϕ′ + ĵ

2πˆ

0

sinϕ′dϕ′

 R̂

0

(ρ′)
2
dρ′(

(ρ′)
2

+ z2
)3/2

and we see that the angular integrals vanish,

2πˆ

0

cosϕ′dϕ′ =

2πˆ

0

sinϕ′dϕ′ = 0
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so this term drops out.
For the remaining integral the angular integral is trivial„

1

4πε0

Q

πR2

2πˆ

0

dϕ′
R̂

0

ρ′dρ′
zk̂(

(ρ′)
2

+ z2
)3/2 =

Qz

4π2ε0R2
k̂

2πˆ

0

dϕ′
R̂

0

ρ′dρ′(
(ρ′)

2
+ z2

)3/2
=

Qz

4π2ε0R2
2πk̂

R̂

0

ρ′dρ′(
(ρ′)

2
+ z2

)3/2
The final integral is

R̂

0

ρ′dρ′(
(ρ′)

2
+ z2

)3/2 = − 1√
(ρ′)

2
+ z2

∣∣∣∣∣∣
R

0

= − 1√
R2 + z2

+
1

z

and therefore,

E (x) =
Q

2πε0R2

(
1− z√

R2 + z2

)
k̂

5.5.2 Using the potential

Now we have only a single integral,

V (x) =
1

4πε0

ˆ
ρ (x′) d3x′

|x− x′|

with ρ (x′) = Q
πR2 δ (z′) Θ (R− ρ′). Since the gradient of V must lie along the z axis, we set |x− x′| =√

(ρ′)
2

+ (z − z′)2 as before

V (x) =
1

4πε0

Q

πR2

ˆ
δ (z′) Θ (R− ρ′) d3x′√

(ρ′)
2

+ (z − z′)2

=
1

4πε0

Q

πR2

2πˆ

0

dϕ′
∞̂

0

ρ′dρ′
∞̂

−∞

dz′δ (z′) Θ (R− ρ′) 1√
(ρ′)

2
+ (z − z′)2

=
1

2πε0

Q

R2

R̂

0

ρ′dρ′√
(ρ− ρ′)2 + z2

The integral is

R̂

0

ρ′dρ′√
(ρ− ρ′)2 + z2

=

√
(ρ′)

2
+ z2

∣∣∣∣R
0

=
√
R2 + z2 − z

so the potential is

V (x) =
Q

2πε0R2

(√
R2 + z2 − z

)
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The electric field is the gradient,

E (x) = −∇
[

Q

2πε0R2

(√
R2 + z2 − z

)]
= − Q

2πε0R2
k̂
∂

∂z

(√
R2 + z2 − z

)
= − Q

2πε0R2
k̂

(
1

2

2z√
R2 + z2

− 1

)
=

Q

2πε0R2

(
1− z√

R2 + z2

)
k̂

In general, it is easier to do a single integral and take derivatives than it is to do three integrals.

6 Exercises

6.1 Electric potential by integrating the electric field
We have found that the electric field due to an infinitely long cylinder of radius R, carrying a total charge
per unit length of λ and having charge density,

ρ (x) =
3λρ′

2πR3
Θ (R− ρ′)

is given by

E (ρ) =

{
λ

2πε0ρ
ρ̂ ρ ≥ R

λρ2

2πε0R3 ρ̂ ρ ≤ R

Find the potential both inside and outside the cylinder by integrating

V (x) = −
x̂

x0

E · dl

Take the zero of the potential to be at ρ0 = R.

6.2 Electric potential directly
Consider a straight wire of length 2L with charge per unit length λ. Take the charge density to be

ρ (x) =
λ

2πρ′
δ (z′) Θ (z′ + L) Θ (L− z′)

By integrating

V (ρ) =
1

4πε0

ˆ
ρ (x′) d3x′

|x− x′|

show that the potential may be written as

V (ρ) =
λ

4πε0
ln

(√
ρ2 + L2 + L√
ρ2 + L2 − L

)
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This potential does not vanish at ρ = R like the one in problem 6.1, but we can make it vanish there by
subtracting the constant V (R) to get

V (ρ) =
λ

4πε0

[
ln

(√
ρ2 + L2 + L√
ρ2 + L2 − L

)
− ln

(√
R2 + L2 + L√
R2 + L2 − L

)]

=
λ

4πε0
ln

(√
ρ2 + L2 + L

) (√
R2 + L2 − L

)(√
ρ2 + L2 − L

) (√
R2 + L2 + L

)
Show that the limit of V (ρ) as L → ∞ agrees with the ρ > R potential of problem 6.1. (You will need

the Taylor series,
√
ρ2 + L2 = L

√
1 + ρ2

L2 ≈ L
(

1 + 1
2
ρ2

L2

)
for ρ� L)

6.3 Electric potential from point particles
Find the electric potential produced by a system of three charges: 2q at the origin, 3q at position x = 2̂i+3ĵ,
and −q at x = 5k̂, then take the gradient of V (x) to find the electric field everywhere.

6.4 Electric field of a charged sphere
By integrating

V (x) =
1

4πε0

ˆ
ρ (x′) d3x′

|x− x′|

find the electric potential for all r of a ball of radius R with charge density

ρ (x′) =

{
λr′2 r′ < R

0 r′ > R

and total charge Q. You may use the charge density in terms of Q that you found for problem 3.1 of the
Gauss’s law notes. Use the potential to find the electric field.
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