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It is possible to write an infinite series in place of many functions. If we know all the derivatives of such
an analytic function at a point, say, x0, then we have the following theorem,

f (x) =

∞∑
n=0

1

n!
f (n) (x0) (x− x0)

n

where we define
f (n) (x) =

dnf (x)

dxn

This is called the Taylor series for the function f (x). The expression is very useful for making approximations
in physics. The usefulness comes when we are interested in the behavior of f (x) when x is very close to x0.

Suppose we let
ε = x− x0 � 1

Then we may rewrite

f (x) =

∞∑
n=0

1

n!
f (n) (x0) ε

n

= f (x0) + f ′ (x0) ε+
1

2
f ′′ (x0) ε

2 + · · ·

where f ′, f ′′, . . . are derivatives of f . If we are willing to neglect terms of order ε2, then we may write

f (x) ≈ f (x0) + f ′ (x0) ε

One of the most common uses of this is when we have an expression of the form

f (x) = (1 + x)
α

where x� 1. Then we have
f ′ = α (1 + x)

α−1

and we may let x0 = 0 to get

f (x) ≈ f (x0 = 0) + f ′ (x0 = 0)x

= f (0) + f ′ (0)x

= [(1 + x)
α
]x=0 +

[
α (1 + x)

α−1
]
x=0

x

= 1 + αx

Notice that α may have either sign. For example, suppose we want to approximate

1

(r2 + d2)
3/2

1



at large distances when r � d. Rewrite this as

1

(r2 + d2)
3/2

=
1

r3
(
1 +

(
d
r

)2)3/2
=

1

r3

(
1 +

(
d

r

)2
)−3/2

where d
r � 1 and the exponent is − 3

2 . We immediately have

1

(r2 + d2)
3/2

≈ 1

r3

(
1− 3d2

2r2

)
This expression is accurate as long as we can neglect terms of order d4

r4 . To see this, carry the Taylor
series further by computing another derivative:

f = (1 + x)
α

f ′ = α (1 + x)
α−1

f ′′ = α (α− 1) (1 + x)
α−2

and write the first three terms,

f (x) ≈ f (x0) + f ′ (x0) ε+
1

2
f ′′ (x0) ε

2

= f (0) + f ′ (0) ε+
1

2
f ′′ (0) ε2

where ε = d2

r2 � 1. Then

1

(r2 + d2)
3/2

≈ 1

r3

(
1− 3d2

2r2
+

1

2
·
(
−3

2

)
·
(
−5

2

)(
d

r

)4
)

=
1

r3

(
1− 3d2

2r2
+

15

8

d4

r4

)
The method not only gives us a simpler way to write the express, but also tells us when the approximation
is a good one.

A few more useful Taylor series are, for αx� 1,

eαx ≈ 1 + αx+
1

2
α2x2

sinαx ≈ αx− 1

3!
α3x3

cosαx ≈ 1− 1

2!
α2x2

As one final example, consider the expansion of

f (x) =
1√

ρ2 + a2 + 2aρ cosα

in the limit ρ� a. Then we may pull out a factor of ρ,

f (x) =
1

ρ
√

1 + a2

ρ2 + 2a
ρ cosα
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Notice that the entire quantity a2

ρ2 + 2a
ρ cosα is much less than one. Think of this as a single small thing.

Since we know that (1 + x)
α ≈ 1 + αx for small x, f (x) becomes

f (x) =
1

ρ
√
1 + a2

ρ2 + 2a
ρ cosα

=
1

ρ

(
1 +

(
a2

ρ2
+

2a

ρ
cosα

))−1/2
≈ 1

ρ

(
1− 1

2

(
a2

ρ2
+

2a

ρ
cosα

))
Since we have only kept the first order term in our expansion, we may only keep up to first order in our
small parameter, aρ , so to this order we write

f (x) ≈ 1

ρ

(
1− a

ρ
cosα

)
If we wish to keep the result to second order, we must expand our Taylor series to this order as well:

(1 + x)
α ≈ 1 + αx+

α (α− 1)

2!
x2

Then we approximate f (x) as

f (x) =
1

ρ

(
1 +

(
a2

ρ2
+

2a

ρ
cosα

))−1/2
≈ 1

ρ

(
1− 1

2

(
a2

ρ2
+

2a

ρ
cosα

)
+

1

2!

(
−1

2

)(
−1

2
− 1

)(
a2

ρ2
+

2a

ρ
cosα

)2
)

=
1

ρ

(
1− 1

2

a2

ρ2
− a

ρ
cosα+

3

8

((
a2

ρ2

)2

+
4a3

ρ3
cosα+

4a2

ρ2
cos2 α

))

Now drop everything of order a3

ρ3 or smaller, so to second order the result is

f (x) ≈ 1

ρ

(
1− 1

2

a2

ρ2
− a

ρ
cosα+

3a2

2ρ2
cos2 α

)
=

1

ρ

(
1− a

ρ
cosα− 1

2

a2

ρ2
(
1 + 3 cos2 α

))
At higher order it is important to keep both terms of

(
a2

ρ2 + 2a
ρ cosα

)
because the cross terms in

(
a2

ρ2 + 2a
ρ cosα

)n
contribute at lower orders.
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