Math reminder: Taylor series

September 18, 2015

It is possible to write an infinite series in place of many functions. If we know all the derivatives of such an analytic function at a point, say, x_{0}, then we have the following theorem,

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}
$$

where we define

$$
f^{(n)}(x)=\frac{d^{n} f(x)}{d x^{n}}
$$

This is called the Taylor series for the function $f(x)$. The expression is very useful for making approximations in physics. The usefulness comes when we are interested in the behavior of $f(x)$ when x is very close to x_{0}.

Suppose we let

$$
\varepsilon=x-x_{0} \ll 1
$$

Then we may rewrite

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_{0}\right) \varepsilon^{n} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \varepsilon+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \varepsilon^{2}+\cdots
\end{aligned}
$$

where $f^{\prime}, f^{\prime \prime}, \ldots$ are derivatives of f. If we are willing to neglect terms of order ε^{2}, then we may write

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \varepsilon
$$

One of the most common uses of this is when we have an expression of the form

$$
f(x)=(1+x)^{\alpha}
$$

where $x \ll 1$. Then we have

$$
f^{\prime}=\alpha(1+x)^{\alpha-1}
$$

and we may let $x_{0}=0$ to get

$$
\begin{aligned}
f(x) & \approx f\left(x_{0}=0\right)+f^{\prime}\left(x_{0}=0\right) x \\
& =f(0)+f^{\prime}(0) x \\
& =\left[(1+x)^{\alpha}\right]_{x=0}+\left[\alpha(1+x)^{\alpha-1}\right]_{x=0} x \\
& =1+\alpha x
\end{aligned}
$$

Notice that α may have either sign. For example, suppose we want to approximate

$$
\frac{1}{\left(r^{2}+d^{2}\right)^{3 / 2}}
$$

at large distances when $r \gg d$. Rewrite this as

$$
\begin{aligned}
\frac{1}{\left(r^{2}+d^{2}\right)^{3 / 2}} & =\frac{1}{r^{3}\left(1+\left(\frac{d}{r}\right)^{2}\right)^{3 / 2}} \\
& =\frac{1}{r^{3}}\left(1+\left(\frac{d}{r}\right)^{2}\right)^{-3 / 2}
\end{aligned}
$$

where $\frac{d}{r} \ll 1$ and the exponent is $-\frac{3}{2}$. We immediately have

$$
\frac{1}{\left(r^{2}+d^{2}\right)^{3 / 2}} \approx \frac{1}{r^{3}}\left(1-\frac{3 d^{2}}{2 r^{2}}\right)
$$

This expression is accurate as long as we can neglect terms of order $\frac{d^{4}}{r^{4}}$. To see this, carry the Taylor series further by computing another derivative:

$$
\begin{aligned}
f & =(1+x)^{\alpha} \\
f^{\prime} & =\alpha(1+x)^{\alpha-1} \\
f^{\prime \prime} & =\alpha(\alpha-1)(1+x)^{\alpha-2}
\end{aligned}
$$

and write the first three terms,

$$
\begin{aligned}
f(x) & \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \varepsilon+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \varepsilon^{2} \\
& =f(0)+f^{\prime}(0) \varepsilon+\frac{1}{2} f^{\prime \prime}(0) \varepsilon^{2}
\end{aligned}
$$

where $\varepsilon=\frac{d^{2}}{r^{2}} \ll 1$. Then

$$
\begin{aligned}
\frac{1}{\left(r^{2}+d^{2}\right)^{3 / 2}} & \approx \frac{1}{r^{3}}\left(1-\frac{3 d^{2}}{2 r^{2}}+\frac{1}{2} \cdot\left(-\frac{3}{2}\right) \cdot\left(-\frac{5}{2}\right)\left(\frac{d}{r}\right)^{4}\right) \\
& =\frac{1}{r^{3}}\left(1-\frac{3 d^{2}}{2 r^{2}}+\frac{15}{8} \frac{d^{4}}{r^{4}}\right)
\end{aligned}
$$

The method not only gives us a simpler way to write the express, but also tells us when the approximation is a good one.

A few more useful Taylor series are, for $\alpha x \ll 1$,

$$
\begin{aligned}
e^{\alpha x} & \approx 1+\alpha x+\frac{1}{2} \alpha^{2} x^{2} \\
\sin \alpha x & \approx \alpha x-\frac{1}{3!} \alpha^{3} x^{3} \\
\cos \alpha x & \approx 1-\frac{1}{2!} \alpha^{2} x^{2}
\end{aligned}
$$

As one final example, consider the expansion of

$$
f(x)=\frac{1}{\sqrt{\rho^{2}+a^{2}+2 a \rho \cos \alpha}}
$$

in the limit $\rho \gg a$. Then we may pull out a factor of ρ,

$$
f(x)=\frac{1}{\rho \sqrt{1+\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha}}
$$

Notice that the entire quantity $\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha$ is much less than one. Think of this as a single small thing. Since we know that $(1+x)^{\alpha} \approx 1+\alpha x$ for small $x, f(x)$ becomes

$$
\begin{aligned}
f(x) & =\frac{1}{\rho \sqrt{1+\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha}} \\
& =\frac{1}{\rho}\left(1+\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)\right)^{-1 / 2} \\
& \approx \frac{1}{\rho}\left(1-\frac{1}{2}\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)\right)
\end{aligned}
$$

Since we have only kept the first order term in our expansion, we may only keep up to first order in our small parameter, $\frac{a}{\rho}$, so to this order we write

$$
f(x) \approx \frac{1}{\rho}\left(1-\frac{a}{\rho} \cos \alpha\right)
$$

If we wish to keep the result to second order, we must expand our Taylor series to this order as well:

$$
(1+x)^{\alpha} \approx 1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}
$$

Then we approximate $f(x)$ as

$$
\begin{aligned}
f(x) & =\frac{1}{\rho}\left(1+\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)\right)^{-1 / 2} \\
& \approx \frac{1}{\rho}\left(1-\frac{1}{2}\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)+\frac{1}{2!}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)^{2}\right) \\
& =\frac{1}{\rho}\left(1-\frac{1}{2} \frac{a^{2}}{\rho^{2}}-\frac{a}{\rho} \cos \alpha+\frac{3}{8}\left(\left(\frac{a^{2}}{\rho^{2}}\right)^{2}+\frac{4 a^{3}}{\rho^{3}} \cos \alpha+\frac{4 a^{2}}{\rho^{2}} \cos ^{2} \alpha\right)\right)
\end{aligned}
$$

Now drop everything of order $\frac{a^{3}}{\rho^{3}}$ or smaller, so to second order the result is

$$
\begin{aligned}
f(x) & \approx \frac{1}{\rho}\left(1-\frac{1}{2} \frac{a^{2}}{\rho^{2}}-\frac{a}{\rho} \cos \alpha+\frac{3 a^{2}}{2 \rho^{2}} \cos ^{2} \alpha\right) \\
& =\frac{1}{\rho}\left(1-\frac{a}{\rho} \cos \alpha-\frac{1}{2} \frac{a^{2}}{\rho^{2}}\left(1+3 \cos ^{2} \alpha\right)\right)
\end{aligned}
$$

At higher order it is important to keep both terms of $\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)$ because the cross terms in $\left(\frac{a^{2}}{\rho^{2}}+\frac{2 a}{\rho} \cos \alpha\right)^{n}$ contribute at lower orders.

