Math reminder: Taylor series

September 18, 2015

It is possible to write an infinite series in place of many functions. If we know all the derivatives of such
an analytic function at a point, say, xg, then we have the following theorem,
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This is called the Taylor series for the function f (). The expression is very useful for making approximations
in physics. The usefulness comes when we are interested in the behavior of f (2) when z is very close to .
Suppose we let
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Then we may rewrite
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where f’, f”, ... are derivatives of f. If we are willing to neglect terms of order £2, then we may write
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One of the most common uses of this is when we have an expression of the form
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where x < 1. Then we have
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and we may let zo = 0 to get
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Notice that o may have either sign. For example, suppose we want to approximate
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at large distances when r > d. Rewrite this as
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where % < 1 and the exponent is —%. We immediately have
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This expression is accurate as long as we can neglect terms of order f—i. To see this, carry the Taylor
series further by computing another derivative:
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and write the first three terms,
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where € = a2 < 1. Then
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The method not only gives us a simpler way to write the express, but also tells us when the approximation

is a good one.
A few more useful Taylor series are, for axr < 1,
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As one final example, consider the expansion of
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in the limit p > a. Then we may pull out a factor of p,
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Notice that the entire quantity Z—; + 27“ cos a is much less than one. Think of this as a single small thing.
Since we know that (14 z)® ~ 1+ ax for small z, f (z) becomes
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Since we have only kept the first order term in our expansion, we may only keep up to first order in our

small parameter, %, so to this order we write
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If we wish to keep the result to second order, we must expand our Taylor series to this order as well:
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Then we approximate f (z) as
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Now drop everything of order Z—z or smaller, so to second order the result is
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At higher order it is important to keep both terms of (Z—; +
contribute at lower orders.



