
Additional Mathematical Tools: Summary

September 9, 2015

Besides vector calculus, we will need some additional mathematical tools. Here I cite some essential
results about cylindrical and spherical coordinates, rotations, the Dirac delta function, and the Helmholz
theorem. I give a separate set of notes with more detailed derivations for those who wish to see them.

1 Cylindrical coordinates
Cylindrical coordinates are the radius, ρ, and angle, ϕ, from the x-axix in the xy plane, together with the
usual Cartesian z coordinate. The transformation is given by

x = ρ cosϕ

y = ρ sinϕ

z = z

with inverse relations

ρ =
√
x2 + y2

ϕ = tan−1
(y
x

)
z = z

Unit vectors in the three (orthogonal) coordinate directions are

ρ̂ = cosϕî + sinϕĵ

ϕ̂ = − sinϕî + cosϕĵ

ẑ = k̂

Inverting these relations we also have

î = cosϕρ̂− sinϕϕ̂

ĵ = sinϕρ̂+ cosϕϕ̂

k̂ = ẑ

We can find the length, dl, of infinitesimal displacements

dl2 = dρ2 + ρ2dϕ2 + dz2

We also need derivatives:

∂

∂x
= cosϕ

∂

∂ρ
− sinϕ

1

ρ

∂

∂ϕ

∂

∂y
= sinϕ

∂

∂ρ
+ cosϕ

1

ρ

∂

∂ϕ
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From these we find the gradient, divergence, curl and Laplacian in cylindrical coordinates to be:

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ k̂

∂

∂z

∇ · v =
1

ρ

∂

∂ρ
(ρvρ) +

1

ρ

∂

∂ϕ
vϕ +

∂

∂z
vz

∇× v = ρ̂

(
1

ρ
∂ϕvz − ∂zvϕ

)
+ ϕ̂ (∂zvρ − ∂ρvz) + k̂

(
1

ρ
∂ρ (ρvϕ)− 1

ρ
∂ϕvρ

)
∇2f =

1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2

2 Spherical coordinates
Spherical coordinates include the radial distance, r, the angle down from the z-axis to the vector, θ, and the
angle, ϕ, in the xy-plane measured from the x-axis. The transformation and its inverse are given by

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

and

r =
√
x2 + y2 + z2

θ = cos−1
z√

x2 + y2 + z2

= tan−1

(√
x2 + y2

z

)
ϕ = tan−1

y

x

Unit vectors in the three (orthogonal) coordinate directions are

r̂ = sin θ cosϕî + sin θ sinϕĵ + cos θk̂

θ̂ = cos θ cosϕî + cos θ sinϕĵ− k̂ sin θ

ϕ̂ = − sinϕî + cosϕĵ

Inverting these relations we also have

î = r̂ sin θ cosϕ+ θ̂ cos θ cosϕ− ϕ̂ sinϕ

ĵ = r̂ sin θ sinϕ+ θ̂ cos θ sinϕ+ ϕ̂ cosϕ

k̂ = r̂ cos θ − θ̂ sin θ

We can find the length, dl, of infinitesimal displacements

dl2 = dr2 + r2dθ2 + r2 sin2 θdϕ2

The gradient, divergence, curl and Laplacian in spherical coordinates are:

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

∇ · v =
1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂

∂ϕ
vϕ
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∇× v =

(
r̂

1

r sin θ

(
∂

∂θ
(sin θvϕ)− ∂

∂ϕ
vθ

)
+ θ̂

(
1

r sin θ

∂

∂ϕ
(vr)−

1

r

∂

∂r
(rvϕ)

)
+ ϕ̂

(
1

r

∂

∂r
(rvθ)−

1

r

∂

∂θ
vr

))
∇2f =

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2

3 Rotations
We wish to describe a rotation through an angle θ around and axis in n̂ direction. Positive θ corresponds
to a counterclockwise rotation when looking down at the tip of n̂. Let the rotation, O, act on an arbitrary
vector v to give the rotated vector v′. To describe what happens, we decompose v into parts parallel and
perpendicular to n̂. The parallel part has magnitude (n̂ · v) and direction n̂ so we define

v‖ = (n̂ · v) n̂

The part of v perpendicular to n̂ has magnitude |n̂× v| = v sinα where α is the angle between the two
vectors. However, the vector n̂× v is perpendicular to both n̂ and v. To write the perpendicular part of v
as a vector v⊥, we need a vector with this magnitude which is perpendicular to n̂ but lies in the n̂v-plane.
We can get it by taking another cross product with n̂× v. Using the BAC-CAB rule,

n̂× (n̂× v) = n̂ (n̂ · v)− v (n̂ · n̂)

= − [v − n̂ (n̂ · v)]

so we can write

v = n̂ (n̂ · v)− n̂× (n̂× v)

The two vectors on the right are perpendicular to one another and lie in the n̂v-plane. We define the
perpendicular component of v to be

v⊥ = −n̂× (n̂× v)

Now we can easily write the rotated vector, v′, because the parallel part is unchanged while the part
lying in the n̂v-plane is a simple 2-dimensional rotation. We therefore have

v′‖ = v‖

v′⊥ = v⊥ cos θ + (n̂× v) sin θ

Adding these and simplifying,

v′ = (n̂ · v) n̂ (1− cos θ) + v cos θ + (n̂× v) sin θ

This gives the form of any vector v when rotated by an angle θ around the direction n̂.
To find the rotation matrix, O, we can look at the effect of this rotation on each of the three Cartesian

unit vectors, î, ĵ, k̂. This results in O as a matrix, [O]:

[O]ij =

 n2x (1− cos θ) + cos θ nxny (1− cos θ)− nz sin θ nxnz (1− cos θ) + ny sin θ
nynx (1− cos θ) + nz sin θ n2y (1− cos θ) + cos θ nynz (1− cos θ)− nx sin θ
nznx (1− cos θ)− ny sin θ nynz (1− cos θ) + nx sin θ n2z (1− cos θ) + cos θ


You may use either the vector formula or the matrix to find v.
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4 Dirac delta function
Let f (x) be a test function – any smooth function which vanishes outside a certain compact region. Then
the Dirac delta function δ (x− x0) has the defining properties,

δ (x− x0) = 0 for x 6= x0
∞̂

−∞

f (x) δ (x− x0) dx = f (x0) for any test function f (x)

It is useful to think of an analogy with the Kronecker delta,

vi =

3∑
i−1

δijvj

f (x0) =

∞̂

−∞

f (x) δ (x− x0) dx

where the discrete sum in the first expression is replaced by a continuous “sum” over x in the second.
You may think of δ (x− x0) as a limit of normalized Gaussians which get progressively taller and narrower,

δ (x− x0) = lim
n→∞

n√
2ϕ

exp

[
−1

2
n2 (x− x0)

2

]
Properly speaking, the delta function has meaning only when integrated.

We can evaluate integrals of expressions containing derivatives of a Dirac delta function as well, using
integration by parts. For any test function f (x), consider the integral

∞̂

−∞

dxf (x)
d

dx
δ (x− x0)

Using the product rule,

d

dx
(f (x) δ (x− x0)) =

df

dx
δ (x− x0) + f (x)

d

dx
δ (x− x0)

f (x)
d

dx
δ (x− x0) =

d

dx
(f (x) δ (x− x0))− df

dx
δ (x− x0)

so substituting, our integral becomes

∞̂

−∞

dxf (x)
d

dx
δ (x− x0) =

∞̂

−∞

dx

[
d

dx
(f (x) δ (x− x0))− df

dx
δ (x− x0)

]

= (f (x) δ (x− x0))|∞−∞ −
∞̂

−∞

dx
df

dx
δ (x− x0)

The integrated term vanishes both because f (x) is a test function and because δ (x− x0) vanishes away
from x0. In the second term, we use the basic property of the delta function to conclude

∞̂

−∞

dxf (x)
d

dx
δ (x− x0) = − df

dx
(x0)
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In higher dimensions, we simply multiply Dirac delta functions

δ3 (x− x0) = δ (x− x0) δ (y − y0) δ (z − z0)

We also define the unit step function:

Θ (x− a) ≡
{

1 x− a > 0
0 x− a < 0

We have the relation

Θ (x− a) =

xˆ

0

δ (x− a) dx

since the integral of the delta function vanishes unless the range of integration includes the singular point
x = a.

The Dirac delta and step functions will allow us to write a complete expression for charge densities even
when they are idealized.

5 Helmholtz theorem
We conclude by writing the Helmholtz theorem.

Suppose we have a vector field, v, in some region or all space, where we know the values of v on the
entire boundary or at infinity, and know its divergence and its curl, ∇ · v and ∇ × v, everywhere. The
Helmholz theorem then states that v is given by

v = u + w + s

= −∇f + ∇×A + s

where:

∇2s = 0

s|S = v|S
and

∇2f = −∇ · v
∇f |S = 0

and

∇2A = −∇× v

∇ ·A = 0

∇×A|S = 0

In general, s satisfies both ∇ · s = 0 and ∇× s = 0. For vanishing boundary conditions s|S = 0, we have
s (x) = 0.

6 Exercises (required)

6.1 Spherical coordinates
Show that the three vectors

r̂ = sin θ cosϕî + sin θ sinϕĵ + cos θk̂

θ̂ = cos θ cosϕî + cos θ sinϕĵ− k̂ sin θ

ϕ̂ = − sinϕî + cosϕĵ
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are orthonormal.

6.2 Spherical and cylindrical basis vectors
Espress the cylindrical basis vectors (ρ̂, ϕ̂, ẑ),

ρ̂ = cosϕî + sinϕĵ

ϕ̂ = − sinϕî + cosϕĵ

ẑ = k̂

in terms of the spherical basis,
(
r̂, θ̂, ϕ̂

)
.

6.3 Divergence and curl: cylindrical
Find the divergence and the curl of

v = ρρ̂+ sinϕϕ̂+ z2ẑ

Find the divergence and the curl of
v = ρϕ̂

6.4 Divergence and curl: spherical
Write each of the vectors of problem 6.3 in spherical coordinates and compute the divergence and curl of
each.

v = ρρ̂+ sinϕϕ̂+ z2ẑ

6.5 Dirac delta
Perform each of the following integrals:

A =

∞̂

−∞

(
3x3 − 2x2 + x− 1

)
δ (x) dx

B =

∞̂

−∞

(
3x3 − 2x2 + x− 1

)
δ (x− 2) dx

C =

∞̂

0

(
3x3 − 2x2 + x− 1

)
δ (x+ 2) dx

D =

4ˆ

2

e−x sinxδ (x− 3) dx

6.6 Charge density
The Dirac delta has units of 1

length and can be used to write infinitesimally thin charge distributions. Thus,
a charge density of σ (charge per unit area) may be written as a volume charge density as

ρ (x) = σδ (z)

This exists for all x and represents a uniform charge per unit area on the xy-plane. If we want to cut off the
distribution at a finite distance from the origin, we can use the unit step function. Thus

ρ (x) = σδ (z) Θ (R− ρ)
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gives a charge density that vanishes when ρ gets bigger than R. The total charge may be found by integrating
over all space:

Q =

ˆ
ρ (x) d3x

=

∞̂

0

ρdρ

2πˆ

0

dϕ

∞̂

−∞

dz [σδ (z) Θ (R− ρ)]

=

∞̂

0

ρdρ

2πˆ

0

dϕ [σΘ (R− ρ)]

=

∞̂

0

ρdρ [2πσΘ (R− ρ)]

=

R̂

0

ρdρ [2πσ]

= σπR2

Use these ideas to write the volume charge density in spherical coordinates of an infinitesimally thin hemi-
sphere of charge of radius R and uniform charge density σ (charge per unit area).
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