Additional Mathematical Tools: Summary

September 9, 2015

Besides vector calculus, we will need some additional mathematical tools. Here I cite some essential results about cylindrical and spherical coordinates, rotations, the Dirac delta function, and the Helmholz theorem. I give a separate set of notes with more detailed derivations for those who wish to see them.

1 Cylindrical coordinates

Cylindrical coordinates are the radius, ρ , and angle, φ , from the x-axix in the xy plane, together with the usual Cartesian z coordinate. The transformation is given by

$$\begin{aligned} x &= \rho \cos \varphi \\ y &= \rho \sin \varphi \\ z &= z \end{aligned}$$

with inverse relations

$$\rho = \sqrt{x^2 + y^2}$$

$$\varphi = \tan^{-1}\left(\frac{y}{x}\right)$$

$$z = z$$

Unit vectors in the three (orthogonal) coordinate directions are

$$\hat{\boldsymbol{\rho}} = \cos \varphi \hat{\mathbf{i}} + \sin \varphi \hat{\mathbf{j}} \hat{\boldsymbol{\varphi}} = -\sin \varphi \hat{\mathbf{i}} + \cos \varphi \hat{\mathbf{j}} \hat{\mathbf{z}} = \hat{\mathbf{k}}$$

Inverting these relations we also have

$$\begin{aligned} \hat{\mathbf{i}} &= \cos \varphi \hat{\boldsymbol{\rho}} - \sin \varphi \hat{\boldsymbol{\varphi}} \\ \hat{\mathbf{j}} &= \sin \varphi \hat{\boldsymbol{\rho}} + \cos \varphi \hat{\boldsymbol{\varphi}} \\ \hat{\mathbf{k}} &= \hat{\mathbf{z}} \end{aligned}$$

We can find the length, dl, of infinitesimal displacements

$$dl^2 = d\rho^2 + \rho^2 d\varphi^2 + dz^2$$

We also need derivatives:

$$\begin{array}{ll} \displaystyle \frac{\partial}{\partial x} & = & \cos \varphi \frac{\partial}{\partial \rho} - \sin \varphi \frac{1}{\rho} \frac{\partial}{\partial \varphi} \\ \displaystyle \frac{\partial}{\partial y} & = & \sin \varphi \frac{\partial}{\partial \rho} + \cos \varphi \frac{1}{\rho} \frac{\partial}{\partial \varphi} \end{array}$$

From these we find the gradient, divergence, curl and Laplacian in cylindrical coordinates to be:

$$\begin{split} \boldsymbol{\nabla} &= \hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho} + \hat{\boldsymbol{\varphi}} \frac{1}{\rho} \frac{\partial}{\partial \varphi} + \hat{\mathbf{k}} \frac{\partial}{\partial z} \\ \boldsymbol{\nabla} \cdot \mathbf{v} &= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho v_{\rho} \right) + \frac{1}{\rho} \frac{\partial}{\partial \varphi} v_{\varphi} + \frac{\partial}{\partial z} v_{z} \\ \boldsymbol{\nabla} \times \mathbf{v} &= \hat{\boldsymbol{\rho}} \left(\frac{1}{\rho} \partial_{\varphi} v_{z} - \partial_{z} v_{\varphi} \right) + \hat{\boldsymbol{\varphi}} \left(\partial_{z} v_{\rho} - \partial_{\rho} v_{z} \right) + \hat{\mathbf{k}} \left(\frac{1}{\rho} \partial_{\rho} \left(\rho v_{\varphi} \right) - \frac{1}{\rho} \partial_{\varphi} v_{\rho} \right) \\ \nabla^{2} f &= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}} + \frac{\partial^{2} f}{\partial z^{2}} \end{split}$$

2 Spherical coordinates

Spherical coordinates include the radial distance, r, the angle down from the z-axis to the vector, θ , and the angle, φ , in the xy-plane measured from the x-axis. The transformation and its inverse are given by

$$\begin{aligned} x &= r \sin \theta \cos \varphi \\ y &= r \sin \theta \sin \varphi \\ z &= r \cos \theta \end{aligned}$$

and

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$= \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$$

$$\varphi = \tan^{-1} \frac{y}{x}$$

Unit vectors in the three (orthogonal) coordinate directions are

$$\hat{\boldsymbol{r}} = \sin\theta\cos\varphi\hat{\mathbf{i}} + \sin\theta\sin\varphi\hat{\mathbf{j}} + \cos\theta\hat{\mathbf{k}} \hat{\boldsymbol{\theta}} = \cos\theta\cos\varphi\hat{\mathbf{i}} + \cos\theta\sin\varphi\hat{\mathbf{j}} - \hat{\mathbf{k}}\sin\theta \hat{\boldsymbol{\varphi}} = -\sin\varphi\hat{\mathbf{i}} + \cos\varphi\hat{\mathbf{j}}$$

Inverting these relations we also have

$$\hat{\mathbf{i}} = \hat{\mathbf{r}} \sin \theta \cos \varphi + \hat{\boldsymbol{\theta}} \cos \theta \cos \varphi - \hat{\boldsymbol{\varphi}} \sin \varphi \hat{\mathbf{j}} = \hat{\mathbf{r}} \sin \theta \sin \varphi + \hat{\boldsymbol{\theta}} \cos \theta \sin \varphi + \hat{\boldsymbol{\varphi}} \cos \varphi \hat{\mathbf{k}} = \hat{\mathbf{r}} \cos \theta - \hat{\boldsymbol{\theta}} \sin \theta$$

We can find the length, dl, of infinitesimal displacements

$$dl^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2$$

The gradient, divergence, curl and Laplacian in spherical coordinates are:

$$\nabla \times \mathbf{v} = \left(\hat{r} \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta v_{\varphi} \right) - \frac{\partial}{\partial \varphi} v_{\theta} \right) + \hat{\theta} \left(\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \left(v_{r} \right) - \frac{1}{r} \frac{\partial}{\partial r} \left(r v_{\varphi} \right) \right) + \hat{\varphi} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r v_{\theta} \right) - \frac{1}{r} \frac{\partial}{\partial \theta} v_{r} \right) \right)$$

$$\nabla^{2} f = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}$$

3 Rotations

We wish to describe a rotation through an angle θ around and axis in $\hat{\mathbf{n}}$ direction. Positive θ corresponds to a counterclockwise rotation when looking down at the tip of $\hat{\mathbf{n}}$. Let the rotation, O, act on an arbitrary vector \mathbf{v} to give the rotated vector \mathbf{v}' . To describe what happens, we decompose \mathbf{v} into parts parallel and perpendicular to $\hat{\mathbf{n}}$. The parallel part has magnitude $(\hat{\mathbf{n}} \cdot \mathbf{v})$ and direction $\hat{\mathbf{n}}$ so we define

$$\mathbf{v}_{\parallel} = (\hat{\mathbf{n}} \cdot \mathbf{v}) \,\hat{\mathbf{n}}$$

The part of \mathbf{v} perpendicular to $\hat{\mathbf{n}}$ has magnitude $|\hat{\mathbf{n}} \times \mathbf{v}| = v \sin \alpha$ where α is the angle between the two vectors. However, the vector $\hat{\mathbf{n}} \times \mathbf{v}$ is perpendicular to both $\hat{\mathbf{n}}$ and \mathbf{v} . To write the perpendicular part of \mathbf{v} as a vector \mathbf{v}_{\perp} , we need a vector with this magnitude which is perpendicular to $\hat{\mathbf{n}}$ but lies in the $\hat{\mathbf{n}}\mathbf{v}$ -plane. We can get it by taking another cross product with $\hat{\mathbf{n}} \times \mathbf{v}$. Using the BAC-CAB rule,

$$\begin{aligned} \hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \mathbf{v}) &= \hat{\mathbf{n}} \left(\hat{\mathbf{n}} \cdot \mathbf{v} \right) - \mathbf{v} \left(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}} \right) \\ &= - \left[\mathbf{v} - \hat{\mathbf{n}} \left(\hat{\mathbf{n}} \cdot \mathbf{v} \right) \right] \end{aligned}$$

so we can write

$$\mathbf{v} = \hat{\mathbf{n}} \left(\hat{\mathbf{n}} \cdot \mathbf{v}
ight) - \hat{\mathbf{n}} imes \left(\hat{\mathbf{n}} imes \mathbf{v}
ight)$$

The two vectors on the right are perpendicular to one another and lie in the $\hat{\mathbf{n}}\mathbf{v}$ -plane. We define the perpendicular component of \mathbf{v} to be

$$\mathbf{v}_{\perp} = -\hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \mathbf{v})$$

Now we can easily write the rotated vector, \mathbf{v}' , because the parallel part is unchanged while the part lying in the $\hat{\mathbf{n}}\mathbf{v}$ -plane is a simple 2-dimensional rotation. We therefore have

$$\begin{aligned} \mathbf{v}_{\parallel}' &= \mathbf{v}_{\parallel} \\ \mathbf{v}_{\perp}' &= \mathbf{v}_{\perp} \cos \theta + (\hat{\mathbf{n}} \times \mathbf{v}) \sin \theta \end{aligned}$$

Adding these and simplifying,

$$\mathbf{v}' = (\hat{\mathbf{n}} \cdot \mathbf{v}) \,\hat{\mathbf{n}} \, (1 - \cos \theta) + \mathbf{v} \cos \theta + (\hat{\mathbf{n}} \times \mathbf{v}) \sin \theta$$

This gives the form of any vector **v** when rotated by an angle θ around the direction $\hat{\mathbf{n}}$.

To find the rotation matrix, O, we can look at the effect of this rotation on each of the three Cartesian unit vectors, $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$. This results in O as a matrix, [O]:

$$[O]_{ij} = \begin{bmatrix} n_x^2 (1 - \cos\theta) + \cos\theta & n_x n_y (1 - \cos\theta) - n_z \sin\theta & n_x n_z (1 - \cos\theta) + n_y \sin\theta \\ n_y n_x (1 - \cos\theta) + n_z \sin\theta & n_y^2 (1 - \cos\theta) + \cos\theta & n_y n_z (1 - \cos\theta) - n_x \sin\theta \\ n_z n_x (1 - \cos\theta) - n_y \sin\theta & n_y n_z (1 - \cos\theta) + n_x \sin\theta & n_z^2 (1 - \cos\theta) + \cos\theta \end{bmatrix}$$

You may use either the vector formula or the matrix to find \mathbf{v} .

4 Dirac delta function

Let f(x) be a test function – any smooth function which vanishes outside a certain compact region. Then the Dirac delta function $\delta(x - x_0)$ has the defining properties,

$$\delta(x - x_0) = 0 \quad \text{for } x \neq x_0$$

$$\int_{-\infty}^{\infty} f(x) \,\delta(x - x_0) \, dx = f(x_0) \quad \text{for any test function } f(x)$$

It is useful to think of an analogy with the Kronecker delta,

$$v_i = \sum_{i=1}^{3} \delta_{ij} v_j$$
$$f(x_0) = \int_{-\infty}^{\infty} f(x) \,\delta(x - x_0) \, dx$$

where the discrete sum in the first expression is replaced by a continuous "sum" over x in the second.

You may think of $\delta(x - x_0)$ as a limit of normalized Gaussians which get progressively taller and narrower,

$$\delta(x - x_0) = \lim_{n \to \infty} \frac{n}{\sqrt{2\varphi}} \exp\left[-\frac{1}{2}n^2(x - x_0)^2\right]$$

Properly speaking, the delta function has meaning only when integrated.

We can evaluate integrals of expressions containing derivatives of a Dirac delta function as well, using integration by parts. For any test function f(x), consider the integral

$$\int_{-\infty}^{\infty} dx f(x) \frac{d}{dx} \delta(x - x_0)$$

Using the product rule,

$$\frac{d}{dx} \left(f\left(x\right)\delta\left(x-x_{0}\right) \right) = \frac{df}{dx}\delta\left(x-x_{0}\right) + f\left(x\right)\frac{d}{dx}\delta\left(x-x_{0}\right)$$
$$f\left(x\right)\frac{d}{dx}\delta\left(x-x_{0}\right) = \frac{d}{dx}\left(f\left(x\right)\delta\left(x-x_{0}\right)\right) - \frac{df}{dx}\delta\left(x-x_{0}\right)$$

so substituting, our integral becomes

$$\int_{-\infty}^{\infty} dx f(x) \frac{d}{dx} \delta(x - x_0) = \int_{-\infty}^{\infty} dx \left[\frac{d}{dx} \left(f(x) \delta(x - x_0) \right) - \frac{df}{dx} \delta(x - x_0) \right] \right]$$
$$= \left(f(x) \delta(x - x_0) \right) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} dx \frac{df}{dx} \delta(x - x_0)$$

The integrated term vanishes both because f(x) is a test function and because $\delta(x - x_0)$ vanishes away from x_0 . In the second term, we use the basic property of the delta function to conclude

$$\int_{-\infty}^{\infty} dx f(x) \frac{d}{dx} \delta(x - x_0) = -\frac{df}{dx} (x_0)$$

In higher dimensions, we simply multiply Dirac delta functions

$$\delta^{3} \left(\mathbf{x} - \mathbf{x}_{0} \right) = \delta \left(x - x_{0} \right) \delta \left(y - y_{0} \right) \delta \left(z - z_{0} \right)$$

We also define the unit step function:

$$\Theta(x-a) \equiv \begin{cases} 1 & x-a > 0\\ 0 & x-a < 0 \end{cases}$$

We have the relation

$$\Theta(x-a) = \int_{0}^{x} \delta(x-a) \, dx$$

since the integral of the delta function vanishes unless the range of integration includes the singular point x = a.

The Dirac delta and step functions will allow us to write a complete expression for charge densities even when they are idealized.

5 Helmholtz theorem

We conclude by writing the Helmholtz theorem.

Suppose we have a vector field, \mathbf{v} , in some region or all space, where we know the values of \mathbf{v} on the entire boundary or at infinity, and know its divergence and its curl, $\nabla \cdot \mathbf{v}$ and $\nabla \times \mathbf{v}$, everywhere. The Helmholz theorem then states that \mathbf{v} is given by

$$\mathbf{v} = \mathbf{u} + \mathbf{w} + \mathbf{s}$$

= $-\nabla f + \nabla \times \mathbf{A} + \mathbf{s}$

where:

$$\nabla^2 \mathbf{s} = 0$$
$$\mathbf{s}|_S = \mathbf{v}|_S$$

and

$$\begin{aligned} \nabla^2 f &= -\boldsymbol{\nabla} \cdot \mathbf{v} \\ \boldsymbol{\nabla} f|_S &= 0 \end{aligned}$$

and

$$\nabla^{2} \mathbf{A} = -\boldsymbol{\nabla} \times \mathbf{v}$$
$$\boldsymbol{\nabla} \cdot \mathbf{A} = 0$$
$$\boldsymbol{\nabla} \times \mathbf{A}|_{S} = 0$$

In general, **s** satisfies both $\nabla \cdot \mathbf{s} = 0$ and $\nabla \times \mathbf{s} = 0$. For vanishing boundary conditions $\mathbf{s}|_S = 0$, we have $\mathbf{s}(\mathbf{x}) = 0$.

6 Exercises (required)

6.1 Spherical coordinates

Show that the three vectors

$$\hat{\boldsymbol{r}} = \sin\theta\cos\varphi\hat{\mathbf{i}} + \sin\theta\sin\varphi\hat{\mathbf{j}} + \cos\theta\hat{\mathbf{k}} \hat{\boldsymbol{\theta}} = \cos\theta\cos\varphi\hat{\mathbf{i}} + \cos\theta\sin\varphi\hat{\mathbf{j}} - \hat{\mathbf{k}}\sin\theta \hat{\boldsymbol{\varphi}} = -\sin\varphi\hat{\mathbf{i}} + \cos\varphi\hat{\mathbf{j}}$$

are orthonormal.

6.2 Spherical and cylindrical basis vectors

Espress the cylindrical basis vectors $(\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\varphi}}, \hat{\mathbf{z}})$,

$$\hat{\boldsymbol{\rho}} = \cos \varphi \hat{\mathbf{i}} + \sin \varphi \hat{\mathbf{j}} \hat{\boldsymbol{\varphi}} = -\sin \varphi \hat{\mathbf{i}} + \cos \varphi \hat{\mathbf{j}} \hat{\mathbf{z}} = \hat{\mathbf{k}}$$

in terms of the spherical basis, $\left(\hat{r}, \hat{\theta}, \hat{\varphi}\right)$.

6.3 Divergence and curl: cylindrical

Find the divergence and the curl of

$$\mathbf{v} = \rho \hat{\boldsymbol{\rho}} + \sin \varphi \hat{\boldsymbol{\varphi}} + z^2 \hat{\mathbf{z}}$$

Find the divergence and the curl of

 $\mathbf{v} = \rho \hat{\boldsymbol{\varphi}}$

6.4 Divergence and curl: spherical

Write each of the vectors of problem 6.3 in spherical coordinates and compute the divergence and curl of each.

$$\mathbf{v} = \rho \hat{\boldsymbol{\rho}} + \sin \varphi \hat{\boldsymbol{\varphi}} + z^2 \hat{\mathbf{z}}$$

6.5 Dirac delta

Perform each of the following integrals:

$$A = \int_{-\infty}^{\infty} (3x^3 - 2x^2 + x - 1) \,\delta(x) \, dx$$
$$B = \int_{-\infty}^{\infty} (3x^3 - 2x^2 + x - 1) \,\delta(x - 2) \, dx$$
$$C = \int_{0}^{\infty} (3x^3 - 2x^2 + x - 1) \,\delta(x + 2) \, dx$$
$$D = \int_{2}^{4} e^{-x} \sin x \,\delta(x - 3) \, dx$$

6.6 Charge density

The Dirac delta has units of $\frac{1}{length}$ and can be used to write infinitesimally thin charge distributions. Thus, a charge density of σ (charge per unit area) may be written as a volume charge density as

$$\rho\left(\mathbf{x}\right) = \sigma\delta\left(z\right)$$

This exists for all \mathbf{x} and represents a uniform charge per unit area on the *xy*-plane. If we want to cut off the distribution at a finite distance from the origin, we can use the unit step function. Thus

$$\rho\left(\mathbf{x}\right) = \sigma\delta\left(z\right)\Theta\left(R - \rho\right)$$

gives a charge density that vanishes when ρ gets bigger than R. The total charge may be found by integrating over all space:

$$Q = \int \rho(\mathbf{x}) d^{3}x$$

$$= \int_{0}^{\infty} \rho d\rho \int_{0}^{2\pi} d\varphi \int_{-\infty}^{\infty} dz \left[\sigma \delta(z) \Theta(R-\rho)\right]$$

$$= \int_{0}^{\infty} \rho d\rho \int_{0}^{2\pi} d\varphi \left[\sigma \Theta(R-\rho)\right]$$

$$= \int_{0}^{\infty} \rho d\rho \left[2\pi\sigma\Theta(R-\rho)\right]$$

$$= \int_{0}^{R} \rho d\rho \left[2\pi\sigma\Theta(R-\rho)\right]$$

$$= \sigma\pi R^{2}$$

Use these ideas to write the volume charge density in spherical coordinates of an infinitesimally thin hemisphere of charge of radius R and uniform charge density σ (charge per unit area).