# Additional Mathematical Tools: Summary 

September 9, 2015

Besides vector calculus, we will need some additional mathematical tools. Here I cite some essential results about cylindrical and spherical coordinates, rotations, the Dirac delta function, and the Helmholz theorem. I give a separate set of notes with more detailed derivations for those who wish to see them.

## 1 Cylindrical coordinates

Cylindrical coordinates are the radius, $\rho$, and angle, $\varphi$, from the $x$-axix in the $x y$ plane, together with the usual Cartesian $z$ coordinate. The transformation is given by

$$
\begin{aligned}
x & =\rho \cos \varphi \\
y & =\rho \sin \varphi \\
z & =z
\end{aligned}
$$

with inverse relations

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}} \\
\varphi & =\tan ^{-1}\left(\frac{y}{x}\right) \\
z & =z
\end{aligned}
$$

Unit vectors in the three (orthogonal) coordinate directions are

$$
\begin{aligned}
\hat{\boldsymbol{\rho}} & =\cos \varphi \hat{\mathbf{i}}+\sin \varphi \hat{\mathbf{j}} \\
\hat{\boldsymbol{\varphi}} & =-\sin \varphi \hat{\mathbf{i}}+\cos \varphi \hat{\mathbf{j}} \\
\hat{\mathbf{z}} & =\hat{\mathbf{k}}
\end{aligned}
$$

Inverting these relations we also have

$$
\begin{aligned}
\hat{\mathbf{i}} & =\cos \varphi \hat{\boldsymbol{\rho}}-\sin \varphi \hat{\boldsymbol{\varphi}} \\
\hat{\mathbf{j}} & =\sin \varphi \hat{\boldsymbol{\rho}}+\cos \varphi \hat{\boldsymbol{\varphi}} \\
\hat{\mathbf{k}} & =\hat{\mathbf{z}}
\end{aligned}
$$

We can find the length, dl , of infinitesimal displacements

$$
d l^{2}=d \rho^{2}+\rho^{2} d \varphi^{2}+d z^{2}
$$

We also need derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\cos \varphi \frac{\partial}{\partial \rho}-\sin \varphi \frac{1}{\rho} \frac{\partial}{\partial \varphi} \\
\frac{\partial}{\partial y} & =\sin \varphi \frac{\partial}{\partial \rho}+\cos \varphi \frac{1}{\rho} \frac{\partial}{\partial \varphi}
\end{aligned}
$$

From these we find the gradient, divergence, curl and Laplacian in cylindrical coordinates to be:

$$
\begin{aligned}
\boldsymbol{\nabla} & =\hat{\boldsymbol{\rho}} \frac{\partial}{\partial \rho}+\hat{\varphi} \frac{1}{\rho} \frac{\partial}{\partial \varphi}+\hat{\mathbf{k}} \frac{\partial}{\partial z} \\
\boldsymbol{\nabla} \cdot \mathbf{v} & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho v_{\rho}\right)+\frac{1}{\rho} \frac{\partial}{\partial \varphi} v_{\varphi}+\frac{\partial}{\partial z} v_{z} \\
\boldsymbol{\nabla} \times \mathbf{v} & =\hat{\boldsymbol{\rho}}\left(\frac{1}{\rho} \partial_{\varphi} v_{z}-\partial_{z} v_{\varphi}\right)+\hat{\boldsymbol{\varphi}}\left(\partial_{z} v_{\rho}-\partial_{\rho} v_{z}\right)+\hat{\mathbf{k}}\left(\frac{1}{\rho} \partial_{\rho}\left(\rho v_{\varphi}\right)-\frac{1}{\rho} \partial_{\varphi} v_{\rho}\right) \\
\nabla^{2} f & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

## 2 Spherical coordinates

Spherical coordinates include the radial distance, $r$, the angle down from the $z$-axis to the vector, $\theta$, and the angle, $\varphi$, in the $x y$-plane measured from the $x$-axis. The transformation and its inverse are given by

$$
\begin{aligned}
x & =r \sin \theta \cos \varphi \\
y & =r \sin \theta \sin \varphi \\
z & =r \cos \theta
\end{aligned}
$$

and

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta & =\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\varphi & =\tan ^{-1} \frac{y}{x}
\end{aligned}
$$

Unit vectors in the three (orthogonal) coordinate directions are

$$
\begin{aligned}
\hat{r} & =\sin \theta \cos \varphi \hat{\mathbf{i}}+\sin \theta \sin \varphi \hat{\mathbf{j}}+\cos \theta \hat{\mathbf{k}} \\
\hat{\boldsymbol{\theta}} & =\cos \theta \cos \varphi \hat{\mathbf{i}}+\cos \theta \sin \varphi \hat{\mathbf{j}}-\hat{\mathbf{k}} \sin \theta \\
\hat{\varphi} & =-\sin \varphi \hat{\mathbf{i}}+\cos \varphi \hat{\mathbf{j}}
\end{aligned}
$$

Inverting these relations we also have

$$
\begin{aligned}
\hat{\mathbf{i}} & =\hat{\boldsymbol{r}} \sin \theta \cos \varphi+\hat{\boldsymbol{\theta}} \cos \theta \cos \varphi-\hat{\boldsymbol{\varphi}} \sin \varphi \\
\hat{\mathbf{j}} & =\hat{\boldsymbol{r}} \sin \theta \sin \varphi+\hat{\boldsymbol{\theta}} \cos \theta \sin \varphi+\hat{\boldsymbol{\varphi}} \cos \varphi \\
\hat{\mathbf{k}} & =\hat{\boldsymbol{r}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta
\end{aligned}
$$

We can find the length, dl, of infinitesimal displacements

$$
d l^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}
$$

The gradient, divergence, curl and Laplacian in spherical coordinates are:

$$
\begin{aligned}
\boldsymbol{\nabla} & =\hat{\boldsymbol{r}} \frac{\partial}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\boldsymbol{\varphi}} \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \\
\boldsymbol{\nabla} \cdot \mathbf{v} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} v_{\varphi}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{v} & =\left(\hat{\boldsymbol{r}} \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(\sin \theta v_{\varphi}\right)-\frac{\partial}{\partial \varphi} v_{\theta}\right)+\hat{\boldsymbol{\theta}}\left(\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}\left(v_{r}\right)-\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\varphi}\right)\right)+\hat{\boldsymbol{\varphi}}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)-\frac{1}{r} \frac{\partial}{\partial \theta} v_{r}\right)\right) \\
\nabla^{2} f & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}
\end{aligned}
$$

## 3 Rotations

We wish to describe a rotation through an angle $\theta$ around and axis in $\hat{\mathbf{n}}$ direction. Positive $\theta$ corresponds to a counterclockwise rotation when looking down at the tip of $\hat{\mathbf{n}}$. Let the rotation, $O$, act on an arbitrary vector $\mathbf{v}$ to give the rotated vector $\mathbf{v}^{\prime}$. To describe what happens, we decompose $\mathbf{v}$ into parts parallel and perpendicular to $\hat{\mathbf{n}}$. The parallel part has magnitude $(\hat{\mathbf{n}} \cdot \mathbf{v})$ and direction $\hat{\mathbf{n}}$ so we define

$$
\mathbf{v}_{\|}=(\hat{\mathbf{n}} \cdot \mathbf{v}) \hat{\mathbf{n}}
$$

The part of $\mathbf{v}$ perpendicular to $\hat{\mathbf{n}}$ has magnitude $|\hat{\mathbf{n}} \times \mathbf{v}|=v \sin \alpha$ where $\alpha$ is the angle between the two vectors. However, the vector $\hat{\mathbf{n}} \times \mathbf{v}$ is perpendicular to both $\hat{\mathbf{n}}$ and $\mathbf{v}$. To write the perpendicular part of $\mathbf{v}$ as a vector $\mathbf{v}_{\perp}$, we need a vector with this magnitude which is perpendicular to $\hat{\mathbf{n}}$ but lies in the $\hat{\mathbf{n}} \mathbf{v}$-plane. We can get it by taking another cross product with $\hat{\mathbf{n}} \times \mathbf{v}$. Using the BAC-CAB rule,

$$
\begin{aligned}
\hat{\mathbf{n}} \times(\hat{\mathbf{n}} \times \mathbf{v}) & =\hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{v})-\mathbf{v}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}) \\
& =-[\mathbf{v}-\hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{v})]
\end{aligned}
$$

so we can write

$$
\mathbf{v}=\hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{v})-\hat{\mathbf{n}} \times(\hat{\mathbf{n}} \times \mathbf{v})
$$

The two vectors on the right are perpendicular to one another and lie in the $\hat{\mathbf{n}} \mathbf{v}$-plane. We define the perpendicular component of $\mathbf{v}$ to be

$$
\mathbf{v}_{\perp}=-\hat{\mathbf{n}} \times(\hat{\mathbf{n}} \times \mathbf{v})
$$

Now we can easily write the rotated vector, $\mathbf{v}^{\prime}$, because the parallel part is unchanged while the part lying in the $\hat{\mathbf{n}} \mathbf{v}$-plane is a simple 2-dimensional rotation. We therefore have

$$
\begin{aligned}
\mathbf{v}_{\|}^{\prime} & =\mathbf{v}_{\|} \\
\mathbf{v}_{\perp}^{\prime} & =\mathbf{v}_{\perp} \cos \theta+(\hat{\mathbf{n}} \times \mathbf{v}) \sin \theta
\end{aligned}
$$

Adding these and simplifying,

$$
\mathbf{v}^{\prime}=(\hat{\mathbf{n}} \cdot \mathbf{v}) \hat{\mathbf{n}}(1-\cos \theta)+\mathbf{v} \cos \theta+(\hat{\mathbf{n}} \times \mathbf{v}) \sin \theta
$$

This gives the form of any vector $\mathbf{v}$ when rotated by an angle $\theta$ around the direction $\hat{\mathbf{n}}$.
To find the rotation matrix, $O$, we can look at the effect of this rotation on each of the three Cartesian unit vectors, $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$. This results in $O$ as a matrix, $[O]$ :

$$
[O]_{i j}=\left[\begin{array}{ccc}
n_{x}^{2}(1-\cos \theta)+\cos \theta & n_{x} n_{y}(1-\cos \theta)-n_{z} \sin \theta & n_{x} n_{z}(1-\cos \theta)+n_{y} \sin \theta \\
n_{y} n_{x}(1-\cos \theta)+n_{z} \sin \theta & n_{y}^{2}(1-\cos \theta)+\cos \theta & n_{y} n_{z}(1-\cos \theta)-n_{x} \sin \theta \\
n_{z} n_{x}(1-\cos \theta)-n_{y} \sin \theta & n_{y} n_{z}(1-\cos \theta)+n_{x} \sin \theta & n_{z}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right]
$$

You may use either the vector formula or the matrix to find $\mathbf{v}$.

## 4 Dirac delta function

Let $f(x)$ be a test function - any smooth function which vanishes outside a certain compact region. Then the Dirac delta function $\delta\left(x-x_{0}\right)$ has the defining properties,

$$
\begin{aligned}
\delta\left(x-x_{0}\right) & =0 \quad \text { for } x \neq x_{0} \\
\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x & =f\left(x_{0}\right) \quad \text { for any test function } f(x)
\end{aligned}
$$

It is useful to think of an analogy with the Kronecker delta,

$$
\begin{aligned}
v_{i} & =\sum_{i-1}^{3} \delta_{i j} v_{j} \\
f\left(x_{0}\right) & =\int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x
\end{aligned}
$$

where the discrete sum in the first expression is replaced by a continuous "sum" over $x$ in the second.
You may think of $\delta\left(x-x_{0}\right)$ as a limit of normalized Gaussians which get progressively taller and narrower,

$$
\delta\left(x-x_{0}\right)=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{2 \varphi}} \exp \left[-\frac{1}{2} n^{2}\left(x-x_{0}\right)^{2}\right]
$$

Properly speaking, the delta function has meaning only when integrated.
We can evaluate integrals of expressions containing derivatives of a Dirac delta function as well, using integration by parts. For any test function $f(x)$, consider the integral

$$
\int_{-\infty}^{\infty} d x f(x) \frac{d}{d x} \delta\left(x-x_{0}\right)
$$

Using the product rule,

$$
\begin{aligned}
\frac{d}{d x}\left(f(x) \delta\left(x-x_{0}\right)\right) & =\frac{d f}{d x} \delta\left(x-x_{0}\right)+f(x) \frac{d}{d x} \delta\left(x-x_{0}\right) \\
f(x) \frac{d}{d x} \delta\left(x-x_{0}\right) & =\frac{d}{d x}\left(f(x) \delta\left(x-x_{0}\right)\right)-\frac{d f}{d x} \delta\left(x-x_{0}\right)
\end{aligned}
$$

so substituting, our integral becomes

$$
\begin{aligned}
\int_{-\infty}^{\infty} d x f(x) \frac{d}{d x} \delta\left(x-x_{0}\right) & =\int_{-\infty}^{\infty} d x\left[\frac{d}{d x}\left(f(x) \delta\left(x-x_{0}\right)\right)-\frac{d f}{d x} \delta\left(x-x_{0}\right)\right] \\
& =\left.\left(f(x) \delta\left(x-x_{0}\right)\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} d x \frac{d f}{d x} \delta\left(x-x_{0}\right)
\end{aligned}
$$

The integrated term vanishes both because $f(x)$ is a test function and because $\delta\left(x-x_{0}\right)$ vanishes away from $x_{0}$. In the second term, we use the basic property of the delta function to conclude

$$
\int_{-\infty}^{\infty} d x f(x) \frac{d}{d x} \delta\left(x-x_{0}\right)=-\frac{d f}{d x}\left(x_{0}\right)
$$

In higher dimensions, we simply multiply Dirac delta functions

$$
\delta^{3}\left(\mathbf{x}-\mathbf{x}_{0}\right)=\delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) \delta\left(z-z_{0}\right)
$$

We also define the unit step function:

$$
\Theta(x-a) \equiv \begin{cases}1 & x-a>0 \\ 0 & x-a<0\end{cases}
$$

We have the relation

$$
\Theta(x-a)=\int_{0}^{x} \delta(x-a) d x
$$

since the integral of the delta function vanishes unless the range of integration includes the singular point $x=a$.

The Dirac delta and step functions will allow us to write a complete expression for charge densities even when they are idealized.

## 5 Helmholtz theorem

We conclude by writing the Helmholtz theorem.
Suppose we have a vector field, $\mathbf{v}$, in some region or all space, where we know the values of $\mathbf{v}$ on the entire boundary or at infinity, and know its divergence and its curl, $\boldsymbol{\nabla} \cdot \mathbf{v}$ and $\boldsymbol{\nabla} \times \mathbf{v}$, everywhere. The Helmholz theorem then states that $\mathbf{v}$ is given by

$$
\begin{aligned}
\mathbf{v} & =\mathbf{u}+\mathbf{w}+\mathbf{s} \\
& =-\boldsymbol{\nabla} f+\boldsymbol{\nabla} \times \mathbf{A}+\mathbf{s}
\end{aligned}
$$

where:

$$
\begin{aligned}
\nabla^{2} \mathbf{s} & =0 \\
\left.\mathbf{s}\right|_{S} & =\left.\mathbf{v}\right|_{S}
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla^{2} f & =-\boldsymbol{\nabla} \cdot \mathbf{v} \\
\left.\nabla f\right|_{S} & =0
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla^{2} \mathbf{A} & =-\boldsymbol{\nabla} \times \mathbf{v} \\
\boldsymbol{\nabla} \cdot \mathbf{A} & =0 \\
\boldsymbol{\nabla} \times\left.\mathbf{A}\right|_{S} & =0
\end{aligned}
$$

In general, $\mathbf{s}$ satisfies both $\boldsymbol{\nabla} \cdot \mathbf{s}=0$ and $\boldsymbol{\nabla} \times \mathbf{s}=0$. For vanishing boundary conditions $\left.\mathbf{s}\right|_{S}=0$, we have $\mathbf{s}(\mathbf{x})=0$.

## 6 Exercises (required)

### 6.1 Spherical coordinates

Show that the three vectors

$$
\begin{aligned}
\hat{\boldsymbol{r}} & =\sin \theta \cos \varphi \hat{\mathbf{i}}+\sin \theta \sin \varphi \hat{\mathbf{j}}+\cos \theta \hat{\mathbf{k}} \\
\hat{\boldsymbol{\theta}} & =\cos \theta \cos \varphi \hat{\mathbf{i}}+\cos \theta \sin \varphi \hat{\mathbf{j}}-\hat{\mathbf{k}} \sin \theta \\
\hat{\boldsymbol{\varphi}} & =-\sin \varphi \hat{\mathbf{i}}+\cos \varphi \hat{\mathbf{j}}
\end{aligned}
$$

are orthonormal.

### 6.2 Spherical and cylindrical basis vectors

Espress the cylindrical basis vectors ( $\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\varphi}}, \hat{\mathbf{z}}$ ),

$$
\begin{aligned}
\hat{\boldsymbol{\rho}} & =\cos \varphi \hat{\mathbf{i}}+\sin \varphi \hat{\mathbf{j}} \\
\hat{\varphi} & =-\sin \varphi \hat{\mathbf{i}}+\cos \varphi \mathbf{j} \\
\hat{\mathbf{z}} & =\hat{\mathbf{k}}
\end{aligned}
$$

in terms of the spherical basis, $(\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\varphi}})$.

### 6.3 Divergence and curl: cylindrical

Find the divergence and the curl of

$$
\mathbf{v}=\rho \hat{\boldsymbol{\rho}}+\sin \varphi \hat{\boldsymbol{\varphi}}+z^{2} \hat{\mathbf{z}}
$$

Find the divergence and the curl of

$$
\mathbf{v}=\rho \hat{\varphi}
$$

### 6.4 Divergence and curl: spherical

Write each of the vectors of problem 6.3 in spherical coordinates and compute the divergence and curl of each.

$$
\mathbf{v}=\rho \hat{\boldsymbol{\rho}}+\sin \varphi \hat{\boldsymbol{\varphi}}+z^{2} \hat{\mathbf{z}}
$$

### 6.5 Dirac delta

Perform each of the following integrals:

$$
\begin{aligned}
& A=\int_{-\infty}^{\infty}\left(3 x^{3}-2 x^{2}+x-1\right) \delta(x) d x \\
& B=\int_{-\infty}^{\infty}\left(3 x^{3}-2 x^{2}+x-1\right) \delta(x-2) d x \\
& C=\int_{0}^{\infty}\left(3 x^{3}-2 x^{2}+x-1\right) \delta(x+2) d x \\
& D=\int_{2}^{4} e^{-x} \sin x \delta(x-3) d x
\end{aligned}
$$

### 6.6 Charge density

The Dirac delta has units of $\frac{1}{\text { length }}$ and can be used to write infinitesimally thin charge distributions. Thus, a charge density of $\sigma$ (charge per unit area) may be written as a volume charge density as

$$
\rho(\mathbf{x})=\sigma \delta(z)
$$

This exists for all $\mathbf{x}$ and represents a uniform charge per unit area on the $x y$-plane. If we want to cut off the distribution at a finite distance from the origin, we can use the unit step function. Thus

$$
\rho(\mathbf{x})=\sigma \delta(z) \Theta(R-\rho)
$$

gives a charge density that vanishes when $\rho$ gets bigger than $R$. The total charge may be found by integrating over all space:

$$
\begin{aligned}
Q & =\int \rho(\mathbf{x}) d^{3} x \\
& =\int_{0}^{\infty} \rho d \rho \int_{0}^{2 \pi} d \varphi \int_{-\infty}^{\infty} d z[\sigma \delta(z) \Theta(R-\rho)] \\
& =\int_{0}^{\infty} \rho d \rho \int_{0}^{2 \pi} d \varphi[\sigma \Theta(R-\rho)] \\
& =\int_{0}^{\infty} \rho d \rho[2 \pi \sigma \Theta(R-\rho)] \\
& =\int_{0}^{R} \rho d \rho[2 \pi \sigma] \\
& =\sigma \pi R^{2}
\end{aligned}
$$

Use these ideas to write the volume charge density in spherical coordinates of an infinitesimally thin hemisphere of charge of radius $R$ and uniform charge density $\sigma$ (charge per unit area).

