
Vectors

September 2, 2015

Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another,
and therefore having direction and magnitude. We will write vectors in boldface here, but for problems and
lectures it is faster to use an arrow, ~v. Since we will write the magnitude of the vector ~v or v as simply v it
is important to always use some distinguishing notation.

While we may always think of a vector as direction and magnitude, we can give a more abstract definition
that doesn’t depend on these intuitions. This has the advantage of allowing us easy algebraic manipulations.
We give an algebraic definition, then describe two important ways of combining two vectors to get a third:
the dot product and the cross product. Finally, we discuss rotations, which leave the important vector
relationships invariant.

1 Definition:
A vector space, V, is a collection of objects called vectors, u,v,w, . . . ∈ V together with an operation,
addition, satisfying the following properties:

1. The sum of any two vectors, u,v ∈ V, denoted w = u + v, is in the vector space as well, w ∈ V.
(Closure)

2. There is an identity vector, 0, called the zero vector, such that for all vectors, u ∈ V,

u+ 0 = 0+ u = u

3. For every u ∈ V, there is an inverse vector in V, called (−u), such that

u+ (−u) = (−u) + u = 0

4. Vector addition is associative. For any three vectors, u,v,w, . . . ∈ V,

(u+ v) +w = u+ (v +w)

and therefore we may unambiguously write u+ v +w for the sum of more than two vectors.

5. Vector addition is commutative. For any two vectors, u,v ∈ V,

u+ v = v + u

There is also a second operation, scalar multiplication (for our purposes by real or complex numbers, a, b, . . . ∈
R or C ), such that for any two scalars, a, b, and any two vectors, u,v ∈ V,

w = au+ bv
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is also in V. Finally, we require the distributive laws,

(a+ b)u = au+ bu

a (u+ v) = au+ av

A vector space is n-dimensional if n is the smallest number such that any collection of n+1 distinct vectors,
{u1, . . . ,un+1} is linearly dependent, in the sense that there exist numbers a1, a2, . . . an+1 such that

a1u1 + a2u2 + . . .+ an+1un+1 = 0

It is then always possible to choose a basis, that is, a set of n independent vectors, e1, . . . , en such that every
vector in V may be written as a linear combination of the form,

u = a1e1 + . . .+ anen

for some real (complex) numbers, a1, . . . , an. These numbers are the components of the vector u in that
basis, and u may be conveniently written as

u = (a1, a2, . . . , an)

2 Dot product

2.1 Length
We require our vectors to have a real, positive length, u,

u = |u|

which we will write using a dot:
u · u = |u|2

We require this length to be linear in the sense that:

|au| = a |u|

By extending linearity to sums of vectors, we can extend the dot product to a real-valued mapping of any
pair of vectors. Noticing that linearity under vector addition would require

|u+ v|2 = (u+ v) · (u+ v)

= u · (u+ v) + v · (u+ v)

= u · u+ u · v + v · u+ v · v

we define the dot product of any two vectors to be

u · v =
1

2

(
|u+ v|2 − |u|2 − |v|2

)
From this it follows that u · v = v · u.

Two vectors are said to be perpendicular or orthogonal if u · v = 0, and parallel if u · v = |u| |v|.
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2.2 Orthonormal basis
Our intuitions about vectors are clearest if we choose an orthonormal basis. Given any vector u, and its
length u, the vector 1

uu has unit length, ∣∣∣∣ 1uu
∣∣∣∣ =

1

u
|u|

=
1

u
u

= 1

Suppose we have a basis, e1, . . . , en. We can then form a new basis which is orthonormal by using a procedure
called Gram-Schmidt orthogonalization.

To be a basis, no two basis vectors can be parallel (prove this!). Therefore, given any two, e1, e2 we make
the first one unit length,

ê1 =
1

e1
e1

Now construct a unit vector orthogonal to ê1 by writing

ê2 =
e2 − (e2 · ê1) ê1
|e2 − (e2 · ê1) ê1|

We now have

ê1 · ê1 = 1

ê1 · ê2 = 0

ê2 · ê2 = 1

We continue in this way, adding one new vector at a time and constructing one perpendicular to all the
previous ones, until we have done the full set. Then for all i, j = 1, . . . , n,

êi · êj = δij (1)

where the Kronecker delta, δij is defined to be the matrix

δij =

{
1 i = j
0 i 6= j

This is just the identity matrix. Notice that eq.(1) is actually n2 distinct equations, since each of i, j may
take ndifferent values.

2.3 Three dimensions
In Euclidean 3-space, we define a Cartesian orthonormal basis êi =

(̂
i, ĵ, k̂

)
for i = 1, 2, 3, where î is a unit

vector pointing in the +x direction, ĵ a unit vector in the y-direction and k̂ is a unit vector point in the +z
directions. Then any vector may be written as

~v = v

= v1 î+ v2ĵ+ v3k̂

= vx î+ vy ĵ+ vzk̂ =

3∑
i=1

viêi

=

3∑
i=1

viêi
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We will use these various notations interchangeably. Notice that, while an arrow over a symbol or boldface
indicates a vector, a carat over a vector, k̂, indicates that it is a unit vector. For any unit vector, we have
v̂ · v̂ = 1.

Using the distributive laws, we find the usual Pythagorean expression for the length of a vector:

v2 = v · v
=

(
vx î+ vy ĵ+ vzk̂

)
·
(
vx î+ vy ĵ+ vzk̂

)
=

(
vx î+ vy ĵ+ vzk̂

)
· vx î+

(
vx î+ vy ĵ+ vzk̂

)
· vy ĵ+

(
vx î+ vy ĵ+ vzk̂

)
· vzk̂

=
(
vx î
)
·
(
vx î
)
+
(
vy ĵ
)
·
(
vx î
)
+
(
vzk̂
)
·
(
vx î
)

+
(
vx î
)
·
(
vy ĵ
)
+
(
vy ĵ
)
·
(
vy ĵ
)
+
(
vzk̂
)
·
(
vy ĵ
)

+
(
vx î
)
·
(
vzk̂
)
+
(
vy ĵ
)
·
(
vzk̂
)
+
(
vzk̂
)
·
(
vzk̂
)

= v2x î · î+ vyvxĵ · î+ vzvxk̂ · î+ vxvy î · ĵ+ v2y ĵ · ĵ+ vzvyk̂ · ĵ+ vxvz î · k̂+ vyvz ĵ · k̂+ v2z k̂ · k̂
= v2x + v2y + v2z

where we have used the orthonormality.
Writing out all nine (or n2) separate terms is tedious. However, if we use index notation, it’s not so bad.

Consider the following shorter version:

v2 = v · v

=

3∑
i=1

viêi ·
3∑
j=1

vj êj

=

3∑
i=1

vi

3∑
j=1

vj êi · êj

=

3∑
i=1

vi

3∑
j=1

vjδij

=

3∑
i=1

vivi

= v21 + v22 + v23

where we use the fact that
3∑
j=1

vjδij = vi

because the δij vanishes unless i = j. Notice that in the first step is is crucial to use different summation
indices in the two sums.

For a general dot product, we now have

u · v =
1

2

(
|u+ v|2 − |u|2 − |v|2

)
=

1

2

(
(ux + vx)

2
+ (uy + vy)

2
+ (uz + vz)

2 −
(
u2x + u2y + u2z

)
−
(
v2x + v2y + v2z

))
=

1

2
(2uxvx + 2uyvy + 2uzvz)

= uxvx + uyvy + uzvz
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2.4 Angles
We can use the dot product to define the angle between two vectors, at least up to the sign of the angle.
Suppose we have two vectors, u,v. If we choose the plane spanned by linear combinations of just these two
to be the xy plane, and then choose the x-axis to lie along the direction of the first vector, then we have

u = ûi

while the second vector lies somewhere in the xy plane,

v = vx î+ vy ĵ

= v cosϕî+ v sinϕĵ

The dot product of u,v is then

u · v = ûi ·
(
v cosϕî+ v sinϕĵ

)
= uv

(
cosϕî · î+ sinϕî · ĵ

)
= uv cosϕ

and therefore, we find the angle from
cosϕ =

u · v
uv

The beauty of this construction is that a rotation is defined as a linear transformation of vectors that preserves
their lengths. Since we have defined the dot product in terms of lengths, rotations also preserve the dot
product, and the angle is now defined in terms of lengths and a dot product. Therefore, the expression above
does not depend on our choosing the x and y axes the way we did. We may always find the cosine of the
angle between two vectors by dividing their dot product by their norms, regardless of the directions of the
coordinate axes.

This result gives us another convenient way to write the dot product, namely,

u · v = uv cosϕ

where u, v are the lengths and ϕ the angle between the vectors.

3 Cross product
There is another way to define a product of two vectors, one which gives a third vector. It exists because
given any two independent vectors in 3-space, there is a unique third vector orthogonal to them both. The
first two define a plane, and the third is normal to that plane. Choosing the direction of the normal by a
right-hand rule, we only need to specify the length of the product vector. We take it to be the area of the
parallelogram defined by the first two vectors.

Once again, let’s start with two vectors u,v, and choose coordinates so that they lie in the xy plane.
Then the area of the parallelogram formed by the two is given by

A = uv sinϕ

Clearly this area is unchanged by rotations, though the normal is not. Since the z direction is given by k̂,
we have

u× v = uv sinϕk̂

The only part of this that changes with rotations is the direction of k̂. Let n̂ be the direction normal to
both u and v as given by the right-hand rule. Then the cross product may be written in a way independent
of coordinates as

u× v = uv sinϕn̂
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Notice that for any vector, v × v = 0.
We may make this definition completely independent of rotations by defining the triple product. Let w

be an arbitrary third vector. Then in general, u,v,w give the sides of a parallelepiped. Since the cross
product gives the area of the base, while h = n̂ ·w gives the height, the volume of the parallelepiped is

w · (u× v) = uv sinϕn̂ ·w = Ah

The triple product is purely geometrical and therefore independent of how we rotate the vectors. By choosing
w perpendicular to the base, we may recover the cross product from the triple product.

To find the component form of the cross product, we use our orthonormal basis.
Clearly, we have:

î× î = 0

ĵ× ĵ = 0

k̂× k̂ = 0

For the remaining products, notice that any pair of the unit vectors give the sides of a unit square. The
angle is 90◦ and the area is 1. The only thing remaining to keep track of is the orientation. Using the right
hand rule we see that

î× ĵ = k̂

ĵ× k̂ = î

k̂× î = ĵ

Reversing the sign allows us to tell which direction the normal points, so that

ĵ× î = −k̂
k̂× ĵ = −î
î× k̂ = −ĵ

We can now find components of the cross product. Let

u = u1 î+ u2ĵ+ u3k̂

v = v1 î+ v2ĵ+ v3k̂

Remembering that everything to do with vectors must be linear,we find

u× v =
(
u1 î+ u2ĵ+ u3k̂

)
×
(
v1 î+ v2ĵ+ v3k̂

)
= u1v1 î× î+ u2v1ĵ× î+ u3v1k̂× î

+u1v2 î× ĵ+ u2v2ĵ× ĵ+ u3v2k̂× ĵ

+u1v3 î× k̂+ u2v3ĵ× k̂+ u3v3k̂× k̂

= −u2v1k̂+ u3v1ĵ

+u1v2k̂− u3v2 î
−u1v3ĵ+ u2v3 î

resulting in
u× v = (u2v3 − u3v2) î+ (u3v1 − u1v3) ĵ+ (u1v2 − v1u2) k̂

We notice that this is just the determinant of the matrix u1 u2 u3
v1 v2 v3
î ĵ k̂


While this result may also be achieved more easily using index notation, it requires use of the Levi-Civita

symbol. We will introduce this later as an optional tool.
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4 Rotations
We defined rotations as linear transformations that preserve the lengths of all vectors. We may write the
components of a linear transformation of an arbitrary vector u as

ũi =

3∑
j=1

Rijuj

and the condition that makes it a rotation is that the length of ũ equals the length of u. In components,
3∑
i=1

uiui =

3∑
i=1

ũiũi

=

3∑
i=1

 3∑
j=1

Rijuj

( 3∑
k=1

Rikuk

)

=

3∑
i=1

3∑
j=1

3∑
k=1

RijujRikuk

=

3∑
j=1

3∑
k=1

(
3∑
i=1

RijRik

)
ujuk

where we use associativity of addition. Now notice that this holds if (and only if),
3∑
i=1

RijRik = δjk

for then the triple sum becomes
3∑
j=1

3∑
k=1

(
3∑
i=1

RijRik

)
ujuk =

3∑
j=1

3∑
k=1

δjkujuk

=

3∑
j=1

ujuj

The transpose of a matrix, Rij is just Rji, so the condition we need in order to have a rotation is

RtR = 1

A matrix is a rotation if and only if its transpose is its inverse.
Let’s check that this works in 2-dimensions. Let

Rij =

(
a b
c d

)
Rtij =

(
a c
b d

)
Then imposing the condition, we have

2∑
i=1

RtjiRik = δjk(
a c
b d

)(
a b
c d

)
=

(
1 0
0 1

)
(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 1

)
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Therefore, we need:

a2 + c2 = 1

ab+ cd = 0

b2 + d2 = 1

We can get the first condition by writing a = cos θ, c = sin θ for any angle θ, and similarly b = cosϕ, d = sinϕ
for some ϕ. The middle condition then tells us that

0 = cos θ cosϕ+ sin θ sinϕ

= cos (θ − ϕ)

so we need ϕ = θ + π
2 . Since sin

(
θ + π

2

)
= cos θ and cos

(
θ + π

2

)
= − sin θ, our rotation matrix becomes

Rij =

(
cos θ − sin θ
sin θ cos θ

)
which is just right.

5 Exercises
For the three vectors

u = 3̂i+ 4ĵ+ 5k̂

v = î+ 2ĵ

w = 7ĵ+ 2k̂

find the following:

1. Find

u× v

u×w

w × v

2. By explicitly taking the dot and cross products find:

u · (u× v)

v · (u× v)

w · (u× v)

3. Find

v × (w ×w)

w × (v ×w)

4. Prove that for any three vectors (the BAC-CAB rule),

A× (B×C) = B (A ·C)−C (A ·B)

You can just substitute general expressions for the products, but there’s an easier way to do this if you
use the rotational invariance of the result.
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