Pretest

January 12, 2016

Potentially useful equations:

$$
\begin{array}{cc}
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta) & \oint \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\text {enclosed }} \\
\int_{-1}^{1} P_{l}(x) P_{l^{\prime}}(x) d x=\frac{2}{2 l+1} \delta_{l l^{\prime}} & \oint \mathbf{B} \cdot \hat{\mathbf{n}} d^{2} x=0 \\
\int_{0}^{\pi} P_{l}(\cos \theta) P_{l^{\prime}}(\cos \theta) \sin \theta d \theta=\frac{2}{2 l+1} \delta_{l l^{\prime}} & \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}
\end{array}
$$

Legendre polynomials:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
P_{2}(x) & =\frac{1}{2}\left(3 x^{2}-1\right) \\
P_{3}(x) & =\frac{1}{2}\left(5 x^{3}-3 x\right)
\end{aligned}
$$

1 Two planes at a right angle and one charge

Consider two conducting half planes at right angles, connected along the z-axis. One has $y=0$ for all x, z, the other $x=0$ for all y, z. Let a single charge q be placed midway between the planes, at the point $(x, y, z)=$ $(1,1,0)$. Find the electric potential everywhere in the positive $x y$-quadrant (i.e. all $(x>0, y>0, z)$)using the method of images.

2 Separation of variables in spherical coordinates

In spherical coordinates, (r, θ, φ), the Laplace equation for the potential is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}}=0
$$

Apply the method of separation of variables to separate this into three ordinary differential equations.

3 A sphere at fixed potential

A hollow sphere of radius R has the potential

$$
V(R, \theta)=V_{0}\left(\cos ^{2} \theta-\frac{1}{3}\right)
$$

on its surface. Using a Legendre series, find the potential, $V(r, \theta)$, everywhere inside the sphere. Start from the φ-independent solution to the Laplace equation in spherical coordinates,

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

and fit to the boundary conditions to find a unique solution.

4 Capacitor with dielectric

A dielectric slab fills the half-space given by $x>0$ and all y, z. The remaining half-space is vacuum. There is an electric field in the vacuum region $(x<0)$ making an angle θ with the interface (the $y z$-plane). We may choose coordinates so that the electric field in the vacuum region is

$$
\mathbf{E}_{v}=E_{0} \sin \theta \hat{\mathbf{i}}+E_{0} \cos \theta \hat{\mathbf{j}}
$$

Use the boundary conditions for dielectrics to find the electric field in the dielectric, \mathbf{E}_{d}. Express your answer in terms of the tangent of the angle, $\tan \theta^{\prime}$, that \mathbf{E}_{d} makes with the $y z$-plane.

5 Biot-Savart applied to a circular current

When the currents are constant and restricted to wires, the Biot-Savart law is

$$
\begin{aligned}
\mathbf{B}(\mathbf{r}) & =\frac{\mu_{0} I}{4 \pi} \int \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}} d \mathbf{l}^{\prime} \times \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& =\frac{\mu_{0} I}{4 \pi} \int \frac{d \mathbf{l}^{\prime} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
\end{aligned}
$$

Use the law to find the magnetic field at points on the z-axis over a circular loop of wire of radius R lying in the $x y$-plane and centered at the origin, which carries a constant current I.

6 Applications of the field equations

Consider an infinite cylindrical wire of radius R carrying a current which increases from the center as r^{2}. If the total current in the wire is I, (a) write the current density, \mathbf{J}, then (b) use

$$
I_{\text {through } A}=\iint_{A} \mathbf{J} \cdot \hat{\mathbf{n}} d^{2} x
$$

together with Ampére's law to find the magnetic field at arbitrary distances r from the wire. Consider both $r<R$ and $r>R$.

