Chapter 12 problems

April 24, 2016

1 Velocity selector (including Jackson 12.4)

Consider orthogonal electric and magnetic fields with $B>E$,

$$
\begin{aligned}
\mathbf{E} & =E \hat{\mathbf{i}} \\
\mathbf{B} & =B \hat{\mathbf{j}}
\end{aligned}
$$

Show that a particle moving with 3-velocity

$$
\mathbf{u}=\frac{c E}{B} \hat{\mathbf{k}}
$$

experiences no net Lorentz force. Why do we require $E<B$?
Now work Jackson 12.4.

2 Motion of a charged particle in orthogonal electric and magnetic fields (like 12.5(a) in Jackson)

Consider the problem of orthogonal \mathbf{E} and \mathbf{B} fields, with $|\mathbf{B}|>|\mathbf{E}|$. Solve by boosting to a frame in which the electric field vanishes, solving the remaining pure magnetic problem, then boosting back to the original frame.

Specifically, in the original frame O, let

$$
\begin{aligned}
\mathbf{E} & =E \hat{\mathbf{i}} \\
\mathbf{B} & =B \hat{\mathbf{j}}
\end{aligned}
$$

and the initial 4 -velocity be

$$
u^{\alpha}=\left(u_{0}^{0}, 0, u_{0}^{y}, u_{0}^{z}\right)
$$

With $B>E$, a boost of the right magnitude in the z-direction will result in a pure magnetic field in the new frame, \tilde{O}. Boost the initial 4-velocity to this frame as well, and solve. Then perform the inverse boost to find the solution in O.

3 Parallel fields (problem 12.6(b) in Jackson)

Find the motion of a particle of charge q which starts from the origin with 4 -velocity

$$
u^{\alpha}=\left(u_{0}^{0}, u_{0}^{x}, 0,0\right)
$$

in parallel, uniform electric and magnetic fields in the z-direction,

$$
\begin{aligned}
& \mathbf{E}=E \hat{\mathbf{k}} \\
& \mathbf{B}=B \hat{\mathbf{k}}
\end{aligned}
$$

4 Jackson, problem 12.9

