Motion in nonuniform fields
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1 Gradient orthogonal to the field

We consider field lines which curve gently away from straight.

1.1 Lorentz force equations

Let the field lines be described by circles of large radius lying in the zy plane. The field is entirely in the
p-direction,

B =B,p
This needs to solve the field equations,
0 = V-B
10 10B 0B
= —— (pB g 4 £
0 = VxB
. (10B, 0B, . (0B, 0B, (0 0B,
= —_ — _— —_— B _—
p(ﬂ op oz >+(P< 9. ap) " ap(p ¢) dp
so we must have
0B,
= 0
I
0B,
_ - 0
P oz
0
— (pB =0
Therefore, we set
B— BORCO
p

where a neighborhood of the large constant radius R is where we consider the gently curving field.
The spatial part of the equation of motion is
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where the cross product is given by
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where the velocity and acceleration are given by
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1.2 Solving for the motion
Solving, the ¢ equation gives a conservation law,
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so pp = Rv) = constant. The z equation also integrated immediately,

z = wBRB
p
dz = wpRd(Inp)
z = Zy+wpR (ln —)

(Jackson is missing a factor of R here). We will return to integrate this equation again once we can approx-
imate p.
Now expand p near R as
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and expand in powers of £ < 1,
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Treating 2o as small as well, this becomes
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Write x = & — a so that
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is a simple harmonic oscillation and the time-averaged value of xis
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We need the radius of the spiral to be much less than R, where setting the centripetal acceleration equal
to the force per unit mass shows that the radius must satisfy
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Using this in the average value of x,
OJBRZQ — Uﬁ
<$> - R2 2 3 2
wg + Y
Uﬁ — wBR,éO
wiR

2 .
il 2o

wiR  wp
Finally, we return to the second integral of the z equation.
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Therefore, the average zvelocity is given by,
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This is the curvature drift. It is orthogonal to both the dominant field lines and the direction in which they
curve.

2 Magnetic bottle

2.1 The form of the field

Consider a field in cylindrical coordinates again, but this time let the field lie predominantly in the z-direction
with increasing strength. Assuming azimuthal symmetry, the field will satisfy
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This time we have B, (p,z) and B, (p, z) are nonvanishing, so we have four equations,
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The second equation shows that B, is a function of z only, and the third then gives B, = B, (p). Substituting
these into the first, we require
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Let the field at p = z = 0 be Bgk, so that © = 0 and o = By. The field is then
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everywhere.

2.2 Equations of motion
Let po be the radius of the orbit at z = 0. We will assume
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The Lorentz force law is given in cylindrical coordinates by
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The acceleration was found above to be
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and the cross product is given by
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Defining wp = qﬁ ¢ and separating components,
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2.3 Perturbative solution

Expand about the initial conditions. For a positive charge, the orbits about the z-axis will be predominantly
in the negative ¢ direction, so let
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Expand the equations of motion, treating 5, x and w; as small. For the p equation,
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Collecting these, we now must solve
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This already shows the effect of the magnetic bottle. As long as the approximations are valid, the velocity
in the z direction decreases linearly to a turning point where the particle reverses direction back toward the
weaker field.

The second equation shows that
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For the first equation, we substitute
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Therefore, x has an oscillatory part together with a polynomial term. Letting
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we substite and drop higher order terms,
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To first order, we therefore have
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As noted above, z initially increases as Zgt, but slows until it stops at time
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and moves back the way it came. At this turning point, the average radius of the orbits has decreased to
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where we have dropped the oscillating term and put %4, for the time.



3 Adiabatic invariants

For periodic classical motions, the action integrals defined by

Ja) = %W(i)dqu)

where 7(;) is the momentum conjugate to the generalized coordinate q(;), are constants of the motion. Here
the integral involves only changes in q(;).
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Even if the Hamiltonian is changing for general motions of the system, the periodicity forces the integral to
vanish.

Now suppose the system is slowly changed, perhaps by changing the masses, charges or other parameters
of the system. If the change is slow compared to the period, then J; is still constant. This can be used
directly to find results for nonuniform fields.



