
Motion in nonuniform fields

May 1, 2016

1 Gradient orthogonal to the field
We consider field lines which curve gently away from straight.

1.1 Lorentz force equations
Let the field lines be described by circles of large radius lying in the xy plane. The field is entirely in the
ϕ-direction,

B = Bϕϕ̂

This needs to solve the field equations,

0 = ∇ ·B

=
1

ρ

∂

∂ρ
(ρBρ) +

1

ρ

∂Bϕ
∂ϕ

+
∂Bz
∂z

0 = ∇×B

= ρ̂

(
1

ρ

∂Bz
∂ρ
− ρ∂Bϕ

∂z

)
+ ϕ̂

(
∂Bρ
∂z
− ∂Bz

∂ρ

)
+ ẑ

(
∂

∂ρ
(ρBϕ)−

∂Bρ
∂ϕ

)
so we must have

∂Bϕ
∂ϕ

= 0

−ρ∂Bϕ
∂z

= 0

∂

∂ρ
(ρBϕ) = 0

Therefore, we set

B =
B0R

ρ
ϕ̂

where a neighborhood of the large constant radius R is where we consider the gently curving field.
The spatial part of the equation of motion is

dv

dt
=

q

mc
v ×B

where the cross product is given by

v ×B = −ρ̂żBϕ + ẑρ̇Bϕ
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where the velocity and acceleration are given by

d

dt
(ρρ̂+ zẑ) = ρ̇ρ̂+ ρϕ̇ϕ̂+ żẑ

dv

dt
=

d

dt
(ρ̇ρ̂+ ρϕ̇ϕ̂+ żẑ)

= ρ̈ρ̂+ 2ρ̇ϕ̇ϕ̂+ ρϕ̈ϕ̂− ρϕ̇2ρ̂+ z̈ẑ

Therefore,

ρ̈ρ̂+ 2ρ̇ϕ̇ϕ̂+ ρϕ̈ϕ̂− ρϕ̇2ρ̂+ z̈ẑ =
q

mc

(
−ρ̂vz

B0R

ρ
+ ẑvρ

B0R

ρ

)
or, separating components and defining ωB ≡ qB0

mc ,

ρ̈ρ̂− ρϕ̇2ρ̂ = −ωB ż
R

ρ
ρ̂

(ρϕ̈+ 2ρ̇ϕ̇) ϕ̂ = 0

z̈ẑ = ωB ρ̇
R

ρ
ẑ

1.2 Solving for the motion
Solving, the ϕ equation gives a conservation law,

ρϕ̈+ 2ρ̇ϕ̇ =
d

dt

(
ρ2ϕ̇

)
= 0

so ρ2ϕ̇ = Rv‖ = constant. The z equation also integrated immediately,

z̈ = ωBR
ρ̇

ρ

dż = ωBRd (ln ρ)

ż = ż0 + ωBR
(
ln
ρ

R

)
(Jackson is missing a factor of R here). We will return to integrate this equation again once we can approx-
imate ρ.

Now expand ρ near R as
ρ = R+ x

and expand in powers of x
R � 1,

ρ̈− ρϕ̇2 = −ωBR
ż

ρ

ẍ− (R+ x)

(
Rv‖

ρ2

)2

= −ωBR
ż0 + ωBR ln

(
1 + x

R

)
R+ x

ẍ− (R+ x)
v2‖

R2

(
1− 4x

R

)
= −ωB

(
ż0 + ωBR ln

x

R

)(
1− x

R

)
ẍ−

(
1− 3x

R

)
v2‖

R
= −ωB

(
ż0

(
1− x

R

)
+ ωBx

)
Treating ż0 as small as well, this becomes

ẍ+

(
ω2
B +

3v2‖

R2

)
x =

v2‖

R
− ωB ż0
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Write x = ξ − a so that

ξ̈ +

(
ω2
B +

3v2‖

R2

)
ξ =

v2‖

R
− ωB ż0 + a

(
ω2
B +

3v2‖

R2

)
and set

a = −
v2‖
R − ωB ż0

ω2
B +

3v2‖
R2

= R
ωBRż0 − v2‖
R2ω2

B + 3v2‖

Then

ξ̈ +

(
ω2
B +

3v2‖

R2

)
ξ = 0

is a simple harmonic oscillation and the time-averaged value of xis

〈x〉 = 〈ξ − a〉
= −〈a〉

= −R
ωBRż0 − v2‖
R2ω2

B + 3v2‖

We need the radius of the spiral to be much less than R, where setting the centripetal acceleration equal
to the force per unit mass shows that the radius must satisfy

v2

a
=

qvB

mc

ω2
Ba = ωBv

a =
v

ωB

Then large R implies

a � R

v‖ � RωB

Using this in the average value of x,

〈x〉 = −R
ωBRż0 − v2‖
R2ω2

B + 3v2‖

=
v2‖ − ωBRż0

ω2
BR

=
v2‖

ω2
BR
− ż0
ωB

Finally, we return to the second integral of the z equation.

ż = ż0 + ωBR
(
ln
ρ

R

)
= ż0 + ωBR ln

(
1 +

x

R

)
= ż0 + ωBx
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Therefore, the average zvelocity is given by,

〈ż〉 = ż0 + ωB 〈x〉

= ż0 + ωB

(
v2‖

ω2
BR
− ż0
ωB

)

=
v2‖

ωBR

This is the curvature drift. It is orthogonal to both the dominant field lines and the direction in which they
curve.

2 Magnetic bottle

2.1 The form of the field
Consider a field in cylindrical coordinates again, but this time let the field lie predominantly in the z-direction
with increasing strength. Assuming azimuthal symmetry, the field will satisfy

0 = ∇ ·B

=
1

ρ

∂

∂ρ
(ρBρ) +

1

ρ

∂Bϕ
∂ϕ

+
∂2Bz
∂z2

0 = ∇×B

= ρ̂

(
1

ρ

∂Bz
∂ρ
− ρ∂Bϕ

∂z

)
+ ϕ̂

(
∂Bρ
∂z
− ∂Bz

∂ρ

)
+ ẑ

(
∂

∂ρ
(ρBϕ)−

∂Bρ
∂ϕ

)
This time we have Bρ (ρ, z) and Bz (ρ, z) are nonvanishing, so we have four equations,

0 =
1

ρ

∂

∂ρ
(ρBρ) +

∂Bz
∂z

0 =
1

ρ

∂Bz
∂ρ

0 =
∂Bρ
∂z
− ∂Bz

∂ρ

0 =
∂Bρ
∂ϕ

The second equation shows that Bz is a function of z only, and the third then gives Bρ = Bρ (ρ). Substituting
these into the first, we require

1

ρ

∂

∂ρ
(ρBρ) = −

∂Bz
∂z

= constant

Therfore, for some constants α and β,
Bz = α− βB0z

and
1

ρ

∂

∂ρ
(ρBρ) = βB0

∂

∂ρ
(ρBρ) = βB0ρ

ρBρ = µ+
1

2
βB0ρ

2

Bρ =
µ

ρ
+

1

2
βB0ρ
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Let the field at ρ = z = 0 be B0k̂, so that µ = 0 and α = B0. The field is then

B =
1

2
βB0ρρ̂+B0 (1− βz) k̂

everywhere.

2.2 Equations of motion
Let ρ0 be the radius of the orbit at z = 0. We will assume

ρ̇

ρ0ωB
� 1

The Lorentz force law is given in cylindrical coordinates by

dv

dt
=

q

γmc
v ×B

The acceleration was found above to be

dv

dt
=
(
ρ̈− ρϕ̇2

)
ρ̂+ (ρϕ̈+ 2ρ̇ϕ̇) ϕ̂+ (z̈) ẑ

and the cross product is given by

v ×B =
(
ρ̇ρ̂+ ρϕ̇ϕ̂+ żk̂

)
×
(
1

2
βB0ρρ̂+B0 (1− βz) k̂

)
=

1

2
βB0ρ (ρϕ̇ϕ̂+ żẑ)× ρ̂+B0 (1− βz) (ρ̇ρ̂+ ρϕ̇ϕ̂)× k̂

=
1

2
βB0ρ (−ρϕ̇ẑ+ żϕ̂) +B0 (1− βz) (−ρ̇ϕ̂+ ρϕ̇ρ̂)

= B0 (1− βz) ρϕ̇ρ̂+B0

(
1

2
βρż −B0ρ̇+ βzρ̇

)
ϕ̂− 1

2
βB0ρ

2ϕ̇ẑ

Defining ωB ≡ qB0

γmc and separating components,

ρ̈− ρϕ̇2 = (1− βz) ρωBϕ̇
1

ρ

d

dt

(
ρ2ϕ̇

)
= ρϕ̈+ 2ρ̇ϕ̇ =

1

2
ωBβρż − ωB ρ̇+ ωBβzρ̇

z̈ = −1

2
βωBρ

2ϕ̇

We will assume

ρ− ρ0
ρ0

� 1

ϕ̇− |ωB |
|ωB |

� 1

β � 1
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2.3 Perturbative solution
Expand about the initial conditions. For a positive charge, the orbits about the z-axis will be predominantly
in the negative ϕ direction, so let

ρ = ρ0 + x

ϕ̇ = −ωB + ω1

Expand the equations of motion, treating β, x and ω1 as small. For the ρ equation,

ẍ− (ρ0 + x) (−ωB + ω1)
2

= (1− βz) (ρ0 + x)ωB (−ωB + ω1)

ẍ− ρ0ω2
B − ω2

Bx+ 2ρ0ωBω1 = −ρ0ω2
B + ρ0ω

2
Bβz + ρ0ωBω1 − xω2

B

ẍ = ρ0ω
2
Bβz − ρ0ωBω1

For the ϕ equation,

1

ρ0 + x

d

dt

((
ρ20 + 2ρ0x

)
(−ωB + ω1)

)
=

1

2
ωBβρ0ż − ωBẋ

ρ0ω̇1 − 2ẋωB =
1

2
ωBβρ0ż − ωBẋ

and finally the z equation is simply

z̈ = −1

2
βρ20ω

2
B

Collecting these, we now must solve

ẍ = ρ0ω
2
Bβz − ρ0ωBω1

ρ0ω̇1 − 2ẋωB =
1

2
ωBβρ0ż − ωBẋ

z̈ = −1

2
βρ20ω

2
B

We integrate the z equation immediately,

ż = ż0 −
1

2
βρ20ω

2
Bt

z = ż0t−
1

4
βρ20ω

2
Bt

2

This already shows the effect of the magnetic bottle. As long as the approximations are valid, the velocity
in the z direction decreases linearly to a turning point where the particle reverses direction back toward the
weaker field.

The second equation shows that

V ≡ ρ0ω1 − xωB −
1

2
ωBβρ0z

= ρ0ω1 − xωB −
1

2
ωBβρ0

(
ż0t−

1

4
βρ20ω

2
Bt

2

)
remains constant. The initial conditions show that V = 0 so we have a solution for ω1,

ω1 =
ωB
ρ0
x+

1

2
ωBβ

(
ż0t−

1

4
βρ20ω

2
Bt

2

)
in terms of x and t.
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For the first equation, we substitute

ẍ = ρ0ω
2
Bβ

(
ż0t−

1

4
βρ20ω

2
Bt

2

)
− xω2

B −
1

2
ω2
Bβρ0

(
ż0t−

1

4
βρ20ω

2
Bt

2

)
ẍ+ ω2

Bx =
1

2
ρ0ω

2
Bβ

(
ż0t−

1

4
βρ20ω

2
Bt

2

)
Therefore, x has an oscillatory part together with a polynomial term. Letting

x = A sinωBt+Bt

we substite and drop higher order terms,

−Aω2
B sinωBt+ ω2

B (A sinωBt+Bt) =
1

2
ρ0ω

2
Bβ

(
ż0t−

1

4
βρ20ω

2
Bt

2

)
Bω2

Bt =
1

2
ρ0ω

2
Bβż0t

so we require

B =
1

2
βρ0ż0

The initial values x0 = 0 and ẋ0 = 0 the give the constant A,

ẋ0 = AωB +
1

2
βρ0ż0

A = − 1

2ωB
βρ0ż0

so that
x = −βρ0ż0

2ωB
(sinωBt+ ωBt)

To first order, we therefore have

ρ = ρ0 −
1

2ωB
βρ0ż0 (sinωBt+ ωBt)

ϕ̇ = −ωB −
1

2
βż0 sinωBt+ βż0ωBt

z = ż0t−
1

4
βρ20ω

2
Bt

2

As noted above, z initially increases as ż0t, but slows until it stops at time

tturn =
2ż0

βρ20ω
2
B

and moves back the way it came. At this turning point, the average radius of the orbits has decreased to

〈ρ〉turn = ρ0 −
1

2ωB
βρ0ż0ωB

2ż0
βρ20ω

2
B

= ρ0 −
ż20

ρ0ω2
B

where we have dropped the oscillating term and put tturn for the time.
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3 Adiabatic invariants
For periodic classical motions, the action integrals defined by

J(i) ≡
˛
π(i)dq(i)

where π(i) is the momentum conjugate to the generalized coordinate q(i), are constants of the motion. Here
the integral involves only changes in q(i).

dJ(i)

dt
=

˛
dπ(i)

dt
dq(i)

=

˛ [
H,π(i)

]
dq(i)

=

˛ (
∂H

∂qk
∂π(i)

∂πk
− ∂H

∂πk

∂π(i)

∂qk

)
dq(i)

=

˛
∂H

∂qk
δikdq(i)

=

˛
∂H

∂qi
dq(i)

=

˛
dH

= 0

Even if the Hamiltonian is changing for general motions of the system, the periodicity forces the integral to
vanish.

Now suppose the system is slowly changed, perhaps by changing the masses, charges or other parameters
of the system. If the change is slow compared to the period, then J(i) is still constant. This can be used
directly to find results for nonuniform fields.
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