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1 The Lorentz force law
We began our study of the relativistic formulation of Maxwell’s equations by writing the Lorentz force law
in spacetime notation,

dpα

dτ
=
q

c
Fαβuβ

If we break this into separate space and time components, the time component is

dp0

dτ
=

q

c
F 0iui

1

c

dE

dτ
=

q

c
E · dx

dτ

and therefore,
dE = qE · dx

This is exactly the energy change of a particle of charge q moving through a displacement dx in an electric
field E. Notice that E is the relativistic energy, E = γmc2.

For the spatial components,

dpi

dτ
=

q

c
F iβuβ

dpi

dτ
=

q

c
F i0u0 +

q

c
F ijuj

γ
dp

dt
=

q

c
(−E) (−γc) + q

c
εijkBkγvj

dp

dt
= q

(
E+

1

c
v ×B

)
and once again, the momentum is relativistic, p = γmv, while v = dx

dt .

2 Lagrangian
In classical mechanics, we may write the Lagrangian for a particle with kinetic energy T = 1

2mv2 and
potential V = V (x) as

L = T − V

Then the Euler-Lagrange equation of motion, equivalent to Newton’s second law, is given by extrema of the
action functional

S =

ˆ
Ldt
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There are, in fact, infinitely many action functionals with the same extrema, so the Lagrangian is not unique.
Rather, we usually seek the simplest action that gives the equation of motion we desire. When the problem
turns relativistic the form L = T − V no longer gives the correct equation, so we must start over.

One property we require of any relativistic action is that it be Lorentz invariant. With this in mind,
consider the simplest Lorentz invariant quantity, the proper time. The proper time along an arbitrary
spacetime path may be written as an integral,

τ =

τ2ˆ

τ1

dτ

=

τ2ˆ

τ1

√
dt2 − 1

c2
dx2

=

t2ˆ

t1

√
1− 1

c2

(
dx

dt

)2

dt

If we vary x (t) to find the extremal paths, we get

0 = δτ

=

t2ˆ

t1

δ

√
1− 1

c2

(
dx

dt

)2

dt

=

t2ˆ

t1

1

2
√
1− v2

c2

(
− 2

c2

)
dx

dt
· dδx
dt

dt

= − 1

c2

t2ˆ

t1

 d
dt

 1√
1− v2

c2

dx

dt
· δx

− d

dt

 1√
1− v2

c2

dx

dt

 · δx
 dt

The first integral vanishes because δx is required to vanish at the endpoints,

− 1

c2

t2ˆ

t1

d

dt

 1√
1− v2

c2

dx

dt
· δx

 dt = − 1

c2
1√

1− v2

c2

dx

dt
· δx

∣∣∣∣∣∣
t2

t1

= 0

leaving us with

0 =
1

c2

t2ˆ

t1

d

dt

 1√
1− v2

c2

dx

dt

 · δxdt
Since δx is arbitrary over the range of integration, this vanishes if and only if

d

dt

 1√
1− v2

c2

dx

dt

 = 0

at every point. Recalling that γdτ = dt, this may be written as

d2x

dτ2
= 0

Thus, we have the vanishing of the spatial components of the 4-acceleration, but not the time component.
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We may get the time component if we parameterize the curve by an arbitrary parameter λ instead of t.
Then with xα = (t (λ) ,x (λ)) we have

dτ2 = dt2 − 1

c2
dx2

=

((
dt

dλ

)2

− 1

c2

(
dx

dλ

)2
)
dλ2

dτ =

√(
dt

dλ

)2

− 1

c2

(
dx

dλ

)2

dλ

Carrying out the variation again,

0 = δτ

=

t2ˆ

t1

δ

√(
dt

dλ

)2

− 1

c2

(
dx

dλ

)2

dλ

=

t2ˆ

t1

1

2

√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2
(
2

(
dt

dλ

dδt

dλ

)
− 2

c2
dx

dλ
· dδx
dλ

)
dλ

=

t2ˆ

t1

 d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 dtdλδt
− d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 dtdλ
 δt

 dλ
−

t2ˆ

t1

 d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 1

c2
dx

dλ
· δx

− d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 1

c2
dx

dλ

 · δx
 dλ

Again, the total derivatives integrate to the endpoints and vanish, leaving

0 =

t2ˆ

t1

− d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 dtdλ
 δt+

d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 1

c2
dx

dλ

 · δx
 dλ

The four variations, δt, δx are all independent, so we now have four equations:

d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 dtdλ
 = 0

d

dλ

 1√(
dt
dλ

)2 − 1
c2

(
dx
dλ

)2 1

c2
dx

dλ

 = 0

The parameter λ is arbitrary, and it is simplest to choose it equal to the proper time. Then the square root
term is just one, √(

dt

dλ

)2

− 1

c2

(
dx

dλ

)2

=

√(
dt

dτ

)2

− 1

c2

(
dx

dτ

)2

=

√(
u0

c2

)2

− 1

c2
(u)

2
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= 1
c

√
(u0)

2 − (u)
2

= 1
c

√
c2

= 1

and the equations of motion give vanishing 4-acceleration,

d2t

dτ2
= 0

d2x

dτ2
= 0

Finally, we may write the whole calculation in spacetime notation. The proper time is

dτ =

√
dxα

dλ

dxα
dλ

dλ

and the variation is

0 = δτ

=

t2ˆ

t1

δ

√
dxα

dλ

dxα
dλ

dλ

=

t2ˆ

t1

1

2
√

dxα

dλ
dxα

dλ

2

(
ηαβ

dxα

dλ

dδxβ

dλ

)
dλ

=

t2ˆ

t1

1

2
√

dxα

dλ
dxα

dλ

2

(
dxα

dλ

dδxα
dλ

)
dλ

=

t2ˆ

t1

 d

dλ

 1√
dxα

dλ
dxα

dλ

(
dxα

dλ
δxα

)− d

dλ

 1√
dxα

dλ
dxα

dλ

dxα

dλ

 δxα

 dλ

= −
t2ˆ

t1

d

dλ

 1√
dxα

dλ
dxα

dλ

dxα

dλ

 δxαdλ

where the integrated term still vanishes at the endpoints. The δxα are arbitrary so, replacing λ = τ as
before,

d2xα

dτ2
= 0

This may also be writting using the momentum,

S =

t2ˆ

t1

√
pαpαdτ

and since there is only one term to the final equation, we do not need the square root,

S =

t2ˆ

t1

pαpαdτ
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or may mix the 4-velocity and 4-momentum,

S =

t2ˆ

t1

uαpαdτ

Any of these will reproduce
dpα

dτ
= 0

3 Electromagnetic interaction
The problem of writing an action functional becomes more difficult when we wish to include an interaction.
Suppose we begin with

S =

t2ˆ

t1

√
−pαpαdτ

and try to add a term proportional to the electric potential φ (xα),

S =

t2ˆ

t1

(√
−pαpα + aφ

)
dτ

for some constant a. Then varying, we find

0 = δS

= δ

t2ˆ

t1

(√
−pαpα + aφ

)
dτ

=

t2ˆ

t1

(
− 1

2
√
−pαpα

2pαδp
α + aδφ

)
dτ

=

t2ˆ

t1

(
− mpα√
−pαpα

d

dτ
δxα + a

∂φ

∂xα
δxα

)
dτ

=

t2ˆ

t1

(
− d

dτ

(
mpα√
−pαpα

δxα
)
+

d

dτ

(
mpα√
−pαpα

)
δxα + a

∂φ

∂xα
δxα

)
dτ

The first term vanishes, and setting pαpα = −m2c2, we are left with

1

c

dpα
dτ

+ a
∂φ

∂xα
= 0

dpα
dτ

= −ac ∂φ
∂xα

If we choose a = q
c , the spatial terms are correct, but the time component is wrong:

dp

dτ
= −q∇φ
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but contracting with uα,

uα
dpα
dτ

= −quα ∂φ

∂xα

−1

2

d

dτ

(
mc2

)
= −qc∂φ

∂τ

0 =
∂φ

∂τ

The action works only for electrostatics.
Fortunately, this problem is corrected if we go to the full Lorentz potential instead of just φ. Since the

4-potential is a vector, not a scalar, we must contract with another 4-vector to have a scalar. The only other
4-vector in the problem is the 4-velocity, so we try a term proportional to Aαuα = −γcφ+ γA · v. To agree
with the static result, we the proportionality constant to be − q

c2

This turns out to be the right approach. Writing

S =

t2ˆ

t1

(√
−pαpα −

q

c2
Aαu

α
)
dτ

we vary

0 = δS

= δ

t2ˆ

t1

(√
−pαpα −

q

c2
Aαu

α
)
dτ

=

t2ˆ

t1

(
− 2pα

2
√
−pβpβ

δpα − q

c2
Aαδu

α − q

c2
δAαu

α

)
dτ

=

t2ˆ

t1

(
− mpα√
−pβpβ

d

dτ
δxα − q

c2
Aα

d

dτ
δxα − q

c2
∂Aα
∂xβ

δxβuα

)
dτ

=

t2ˆ

t1

d

dτ

(
− mpα√
−pβpβ

δxα − q

c2
Aαδx

α

)
dτ

+

t2ˆ

t1

(
d

dτ

(
mpα√
−pβpβ

)
δxα +

q

c2
dAα
dτ

δxα − q

c2
∂Aα
∂xβ

δxβuα

)
dτ

We discard the two total derivative terms, leaving

0 =

t2ˆ

t1

(
d

dτ

(
mpα√−pµpµ

)
+

q

c2
dAα
dτ
− q

c2
∂Aβ
∂xα

uβ
)
δxαdτ

Since the variation is arbitrary, the term in parentheses must vanish. Setting
√−pµpµ = mc, the equation

of motion is
1

c

dpα
dτ

= − q

c2

(
dAα
dτ
− ∂Aβ
∂xα

uβ
)

Expanding with the chain rule,
dAα
dτ

=
∂Aα
∂xβ

dxβ

dτ
=
∂Aα
∂xβ

uβ
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we have

1

c

dpα
dτ

= − q

c2

(
∂Aα
∂xβ

− ∂Aβ
∂xα

)
uβ

dpα
dτ

=
q

c
Fαβu

β

Adjusting index positions we have the Lorentz force law,

dpα

dτ
=

q

c
Fαβuβ

We therefore have a satisfactory action,

S =

t2ˆ

t1

(√
−pαpα −

q

c2
Aαu

α
)
dτ
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