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1 Lorentz transformations
Here we develop the form of Lorentz transformations using techniques from the study of Lie algebras. We
find the general form of infinitesimal transformations, then apply those infinitely many times to develop the
full set of finite transformations.

We define Lorentz transformations to be those linear transformations of the spacetime coordinates xα =
(ct, x, y, z) , α = 0, 1, 2, 3 for which

ds2 = ηαβx
αxβ

= −c2t2 + x2 + y2 + z2

or equivalently, those linear transformations that preserve the wave equation. Either of these specifications
leads to the necessary and sufficient condition

ηµνΛµαΛνβ = ηαβ (1)

1.1 Infinitesimal transformations
We find all Lorentz transformations by first considering infinitesmal ones,

Λµα = δµα + εµα

The defining condition becomes

ηµν (δµα + εµα)
(
δνβ + ενβ

)
= ηαβ

ηµνδ
µ
αδ
ν
β + ηµνδ

µ
αε
ν
β + ηµνε

µ
αδ
ν
β + ηµνε

µ
αε
ν
β = ηαβ

ηαβ + ηανε
ν
β + ηµβε

µ
α +O

(
ε2
)

= ηαβ

Dropping the higher order term, cancelling ηαβ , and defining

εαβ ≡ ηαµεµβ

we have
εαβ + εβα = 0

so that εαβ must be antisymmetric.
The most general antisymmetric 4× 4 matrix may be written as

0 a3 a2 a3
−a1 0 b3 −b2
−a2 −b3 0 b1
−a3 b2 −b1 0

 = a1


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

+ a2


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


1



+ · · ·+ b1


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


= aiKi + biJi

where

ai = (a1, a2, a3)

bi = (b1, b2, b3)

and

[K1]αβ =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



[K2]αβ =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



[K3]αβ =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


and finally,

[J1]αβ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 =

(
0 0

0 J̃1

)

[J2]αβ =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 =

(
0 0

0 J̃2

)

[J3]αβ =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 =

(
0 0

0 J̃3

)

The 3× 3 matrices J̃i have components given by the Levi-Civita tensor,[
J̃i

]
jk

= εijk

To compute the transformations, we need to raise the first index of Ki and Ji using the inverse metric.
The three Ki change:

[K1]
α
β = ηαµ [K1]µβ

=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


2



=


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



[K2]αβ =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0



[K3]αβ =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0


while the Ji stay the same, that is, [Ji]

α
β has identical components to [Ji]αβ . The transformations generated

by the Ji with therefore be different from those generated by Ki.

2 Finite transformations
We build up finite transformations as the limit of an infinite number of infinitesmial transformations.

2.1 Rotations
Consider the transformations involving Ji first. A general, infinitesimal Ji-type transformation is given by

Λ = 1 + b · J

To find a finite transformation we take the limit of many infinitesimal ones. Write the infinitesimal vector
b as b = εn where n is a unit vector. Then define the finite transformation,

Λ (n, θ) = lim
n→∞

(1 + εn · J)
n

where we take the limit in such a way that εn→ θ. To evaluate this we use the binomial theorem,

(a+ b)
n

=

n∑
k=0

(
n
k

)
an−kbk

to write

Λ (n, θ) = lim
n→∞

n∑
k=0

(
n
k

)
1n−k (εn · J)

k

= lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk (n · J)

k

Now we need powers of n · J. This is easiest if we focus on the nontrivial 3× 3 part, since

(n · J)
n

=

(
0 0

0
(
n · J̃

)n )
Since every term in Λ lies in the lower 3 × 3 corner, this transformation only affects x, y, z and not t. Let
Λ̃ (n, θ) be the 3-dim transformation,

Λ̃ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk
(
n · J̃

)k
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with J̃ the 3× 3 form of the generators. We find

(
n · J̃

)2
=

 0 n3 −n2
−n3 0 n1
n2 −n1 0

2

=

 −n22 − n23 n1n2 n1n3
−n1n2 −n21 − n23 n2n3
n1n3 n2n3 −n21 − n22


=

 n1n1 n1n2 n1n3
n1n2 n2n2 n2n3
n1n3 n2n3 n3n3

− (n21 + n22 + n23
) 1

1
1


[(

n · J̃
)2]i

j

= −
(
δij − ninj

)
Taking one more power,

(
n · J̃

)3
=

 n1n1 n1n2 n1n3
n1n2 n2n2 n2n3
n1n3 n2n3 n3n3

−
 1

1
1

 0 n3 −n2
−n3 0 n1
n2 −n1 0


=

 n1n1 n1n2 n1n3
n1n2 n2n2 n2n3
n1n3 n2n3 n3n3

 0 n3 −n2
−n3 0 n1
n2 −n1 0

−
 0 n3 −n2
−n3 0 n1
n2 −n1 0


=

 0 0 0
0 0 0
0 0 0

− (n · J̃
)

= −
(
n · J̃

)
so we have come back to the original matrix except for a sign. If we define M̃ ≡ −

(
n · J̃

)2
then we may

write all powers as (
n · J̃

)2m
= (−1)

m
M̃(

n · J̃
)2m+1

= (−1)
m

n · J̃

and the series becomes

Λ̃ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk
(
n · J̃

)k
= lim

n→∞

[
1̃ +

n∑
m=1

n!

(2m)! (n− 2m)!
ε2m

(
n · J̃

)2m
+

n∑
m=0

n!

(2m+ 1)! (n− 2m− 1)!
ε2m+1

(
n · J̃

)2m+1
]

= 1̃− M̃ + M̃ lim
n→∞

n∑
m=0

(−1)
m
n!

(2m)! (n− 2m)!
ε2m + n · J̃ lim

n→∞

n∑
m=0

(−1)
m
n!

(2m+ 1)! (n− 2m− 1)!
ε2m+1

where we add and subtract M̃ so that m starts at 0 in the first sum. Now look at the remaining sums.
Multiplying and dividing the first by n2m,

lim
n→∞

n∑
m=0

(−1)
m
n!

(2m)! (n− 2m)!
ε2m = lim

n→∞

n∑
m=0

(−1)
m
n!

(2m)!n2m (n− 2m)!
(nε)

2m
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= lim
n→∞

n∑
m=0

(−1)
m
n (n− 1) (n− 2) · · · (n− 2m+ 1)

(2m)!n2m
(nε)

2m

= lim
n→∞

n∑
m=0

(−1)
m

1
(
1− 1

n

) (
1− 2

n

)
· · · (1− 2m−1

n )

(2m)!
(nε)

2m

=

∞∑
m=0

(−1)
m
θ2m

(2m)!

= cos θ

and similarly for the second

lim
n→∞

n∑
m=0

(−1)
m
n!

(2m+ 1)! (n− 2m− 1)!
ε2m+1 = lim

n→∞

n∑
m=0

(−1)
m
η2m+1

(2m+ 1)!

= sin θ

The full transformation is therefore

Λ̃ (n, θ) = 1̃− M̃ + M̃ cos θ + n · J̃ sin θ

where
M̃ij = δij − ninj

This is a rotation through an angle θ about the n direction. To see this, consider the effect on an arbitrary
position vector, xi. In components, remembering that

[
J̃i

]
jk

= εijk,

Λ̃ijx
j =

[
δij −

(
δij − ninj

)]
xj +

(
δij − ninj

)
xj cos θ + nkε

ki
j sin θ

= ninjx
j +

(
xi − ninjxj

)
cos θ + nkε

ki
jx
j sin θ

= ninjx
j +

(
xi − ninjxj

)
cos θ − εikjnkxj sin θ

Λ̃x = n (n · x) + (x− n (n · x)) cos θ − (n× x) sin θ

Now divide x into parts parallel and perpendicular to n,

x‖ = n (n · x)

x⊥ = x− n (n · x)

and notice that n× x is perpendicular to both.

Λ̃x = x‖ + x⊥ (cos θ − 1)− (n× x⊥) sin θ

The part of x parallel to n is unaffected by the transformation, while the perpendicular part undergoes a
rotation by θ in the plane perpendicular to n

2.2 Boosts
Now consider the transformations generated by Ki. The basic approach is identical, with only the generators
differing. Identical steps, taking the limit of many infinitesimal transformations, lead to

Λ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk (n ·K)

k
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where the limit is taken with nε → ζ where ζ is finite. The powers of n ·K again split into even and odd.
Starting with

n ·K =


0 −n1 −n2 −n3
−n1 0 0 0
−n2 0 0 0
−n3 0 0 0



(n ·K)
2

=


1 0 0 0
0 n1n1 n2n1 n3n1
0 n1n2 n2n2 n3n2
0 n1n3 n2n3 n3n3



(n ·K)
3

=


1 0 0 0
0 n1n1 n2n1 n3n1
0 n1n2 n2n2 n3n2
0 n1n3 n2n3 n3n3




0 −n1 −n2 −n3
−n1 0 0 0
−n2 0 0 0
−n3 0 0 0



=


0 −n1 −n2 −n3
−n1 0 0 0
−n2 0 0 0
−n3 0 0 0


so in general,

(n ·K)
2m+1

= n ·K

(n ·K)
2m

=


1 0 0 0
0 n1n1 n2n1 n3n1
0 n1n2 n2n2 n3n2
0 n1n3 n2n3 n3n3

 ≡ N

Notice that there is no alternating sign now. The power series rearranges as before to give

Λ (n, θ) = lim
n→∞

n∑
k=0

n!

k! (n− k)!
εk (n ·K)

k

= 1−N + N

∞∑
m=0

ζ2m

(2m)!
+ n ·K

∞∑
m=0

ζ2m+1

(2m+ 1)!

= 1−N + N cosh ζ + n ·K sinh ζ

If we define nα =
(
0, ni

)
and mα = (1,0) then we may write

[N]
α
β = nαnβ +mαmβ

[n ·K]
α
β = −mαnβ − nαmβ

and the Lorentz boost becomes

Λαβ = δαβ + (nαnβ +mαmβ) (cosh ζ − 1)− (mαnβ + nαmβ) sinh ζ

To see that this is a boost, let n lie in the x-direction. Then

n ·K =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0



N =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
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and therefore

Λ (n, θ) = 1−N + N cosh ζ + n ·K sinh ζ

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


cosh ζ 0 0 0

0 cosh ζ 0 0
0 0 0 0
0 0 0 0

+


0 − sinh ζ 0 0

− sinh ζ 0 0 0
0 0 0 0
0 0 0 0



=


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1


just as we found previously as on of the transformations preserving the wave equation.
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