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The scattering of waves of any kind, by a compact object, has applications on all scales, from the scattering
of light from the early universe by intervening galaxies, to the scattering of protons into Higgs particles at
the Large Hadron Collider. Between these extremes lie myriad phenomena from rainbows and the blue sky
to geometric optics. The same basic principles apply to the description of all of these phenomena.

Scattering of light depends on the size of the scatterer relative to the wavelength of the light. For
wavelengths much smaller than the scattering object, geometric optics gives an adequate description. At
larger wavelengths, corrections to geometric optics may be found. At the other extreme, it is possible to
do a treatment in terms of lowest-order multipoles. Between these extremes, a full multipole treatment is
required.

1 Differential cross-section
We will be especially interested in the differential cross-section: the probability of scattering into a given
solid angle.

In the radiation zone, the time-averaged radiated power per unit area is given by the Poynting vector,
dP
dA = r̂ · S. Writing the time-averaged radiated power as S = 1

2 (E×H∗), gives the time-averaged radiated
power per unit area

dP

dA
=

1

2
|n · (E×H∗)|

For electric dipole or quadrupole fields in the radiation zone we found that H =
√

ε0
µ0

(n×E), so this
becomes

dP

dA
=

1

2

∣∣∣∣n · (E×√ ε0

µ0
(n×E∗)

)∣∣∣∣
=

1

2

√
ε0

µ0
|E|2

=
1

2Z0
|E|2

Finally, we write the area element dA = r2dΩ in terms of the solid angle dΩ, to get the time-averaged
radiated power per unit solid angle,

dP

dΩ
=

1

2Z0
r2 |E|2

If we desire the cross-section for a particular polarization, we consider only that component of the electric
field,

dP

dΩ
=

1

2Z0
r2 |ε∗ ·E|2
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In scattering experiments, a target is struck by many incoming waves, so we express the outgoing power
as a probability for scattering in a given solid angle. To do this, we normalize by the incident power per unit
area. The result is the differential cross-section

dσ

dΩ
≡ 1

dPincident/dA

dPscattered
dΩ

=
1

2Z0
r2 |ε∗ ·Escattered|2

1
2Z0
|ε∗ ·Einc|2

=
r2 |ε∗ ·Escattered|2

|ε∗ ·Einc|2

Because we divide by the incident power per unit area, the differential cross-section and the total cross-section
have units of area. The total cross-section, σ, is found by integrating over all angles

σ =

2πˆ

0

π̂

0

dσ

dΩ
sin θdθdϕ

The total cross-section may be thought of as the effective cross-sectional area of the target.
For long wavelength or small scatterers, we may assume an incoming polarized plane wave,

Esc = ε0E0e
ikn0·x

Hsc =
1

Z0
n0 ×Esc

which induces electric and magnetic dipole moments, p,m, in the scatterer. Then the scattered radiation is
the resulting dipole radiation,

Esc =
1

4πε0
k2 e

ikr

r

[
(n× p)× n− 1

c
n×m

]
Hsc =

1

Z0
n×Esc

Now, substituting into the differential cross section, we have

dσ

dΩ
(n, ε,n0, ε0) =

1
2Z0

r2 |ε∗ ·Escattered|2

1
2Z0
|ε∗0 ·Einc|

2

=
r2
∣∣∣ε∗ · 1

4πε0
k2 eikr

r

[
(n× p)× n− 1

cn×m
]∣∣∣2

E2
0

=
k4

(4πε0E0)
2

∣∣∣∣[ε∗ · (p− (n · p)n)− 1

c
ε∗ · (n×m)

]∣∣∣∣2
=

k4

(4πε0E0)
2

∣∣∣∣[ε∗ · p− (n · p) (ε∗ · n)− 1

c
m · (ε∗ × n)

]∣∣∣∣2
=

k4

(4πε0E0)
2

∣∣∣∣ε∗ · p +
1

c
m · (n× ε∗)

∣∣∣∣2
We have therefore reduced the scattering problem to finding the induced polarization and magnetization.
These induced properties generically involve the direction, n0, and polarization, ε0 of the incident light.
Notice that the differential cross section depends on k4. This dependence, called Rayleigh’s law, will be the
case unless both dipole moments vanish - quadrupole radiation will depend on k6, and so on.
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2 Example 1: Scattering by a small dielectric sphere

2.1 The outgoing electric field
For a dielectric sphere much smaller than the wavelength, we may treat the electric field as momentarily
constant across the sphere.

Recall the solution for a dielectric sphere in a constant field. We start with a pair of series solutions for
the potential inside and out,

Φin =

∞∑
l=0

Alr
lPl (cos θ)

Φout = −E0r cos θ +

∞∑
l=0

Blr
−(l+1)Pl (cos θ)

where the first term in Φout gives the constant field at “large” distances from the sphere. The remaining
terms incorporate the boundary conditions at the origin and infinity. Then, equating the tangential E and
normal D fields we equate like coefficients to find the solution

Φin = − 3ε0
ε+ 2ε0

E0r cos θ

Φout = −E0r cos θ +
ε− ε0
ε+ 2ε0

E0a
3

r2
cos θ

with the field outside being

Eout = −∇Φout

= −n̂ ∂

∂r
Φout − θ̂

1

r

∂

∂θ
(Φout)

= −n̂ ∂

∂r

(
−E0r cos θ +

ε− ε0
ε+ 2ε0

E0a
3

r2
cos θ

)
− θ̂ 1

r

∂

∂θ

(
−E0r cos θ +

ε− ε0
ε+ 2ε0

E0a
3

r2
cos θ

)
= E0k̂ +

2ε− 2ε0
ε+ 2ε0

E0a
3

r3
n̂ cos θ +

(
ε− ε0
ε+ 2ε0

E0a
3

r3

)
θ̂ sin θ

= E0k̂ +
ε− ε0
ε+ 2ε0

E0a
3

r3

(
2n̂ cos θ + θ̂ sin θ

)
= E0k̂ +

ε− ε0
ε+ 2ε0

E0a
3

r3

(
3n̂ cos θ −

(
n̂ cos θ − θ̂ sin θ

))
= E0k̂ +

ε− ε0
ε+ 2ε0

E0a
3

r3

(
3n̂ cos θ − k̂

)
where we used

θ̂ = n̂ sin θ − k̂ cos θ

k̂ = n̂ cos θ − θ̂ sin θ

Notice that the potential inside is just proportional to z = r cos θ, so the induced electric field inside is
parallel to the applied field, but changed (generally reduced) in magnitude by 3ε0

ε+2ε0
.

We know that a dipole p = pk̂ at the origin produces an electric field

E =
3n̂ (n̂ · p)− p

4πε0r3

=
p

4πε0r3

(
3n̂ cos θ − k̂

)
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Comparing this dipole field to the non-constant part of the exterior field,

ε− ε0
ε+ 2ε0

E0a
3

r3

(
3n̂ cos θ − k̂

)
=

p

4πε0r3

(
3n̂ cos θ − k̂

)
we see that we can identify the dipole strength as

p = 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
k̂

2.2 Differential cross section
Now return to the differential cross-section. Since there is no magnetic dipole moment, we set m = 0, leaving

dσ

dΩ
(n, ε,n0, ε0) =

k4

(4πε0E0)
2 |ε
∗ · p|2

From here there are several cases, depending on the polarizations of the incoming and outgoing waves.
We have computed the dipole moment assuming the electric field is in the z-direction, but to find the

angular distribution it is easier to let the incoming wave propagate in the z-direction. Rotating the coordinate
system so that the incoming wave moves in the k̂-direction with polarization in the ε̂0-direction, we have

E = E0ε̂0e
ikz−iωt

p = 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
ε̂0

where the polarization vector, ε̂0, may be in any combination of the x and y directions. Notice that the
induced polarization is parallel to the polarization of the incident wave. It makes no difference which direction
we choose for the incident polarization, since changing it is simply a change in the origin of the ϕ coordinate.
We may always choose the x-axis to be the polarization direction,

ε0 = î

For the outgoing wave, the possible linear polarizations are in the directions orthogonal to the outward radial
unit vector, n. It is convenient to write out the unit vectors for spherical coordinates:

n = î sin θ cosϕ+ ĵ sin θ sinϕ+ k̂ cos θ

θ̂ = î cos θ cosϕ+ ĵ cos θ sinϕ− k̂ sin θ

ϕ̂ = −î sinϕ+ ĵ cosϕ

It is easy to check that these are orthonormal. The outward moving, scattered wave may have polarization
in any combination of the θ̂ and the ϕ̂ directions. We can now compute the differential cross-section. If the
measured polarization is in the θ̂ direction,

dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = î

)
=

k4

(4πε0E0)
2 |ε
∗ · p|2

=
k4

(4πε0E0)
2

∣∣∣∣θ̂ · 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
î

∣∣∣∣2
=

k4

(4πε0E0)
2

(
4πε0E0a

3
)2( ε− ε0

ε+ 2ε0

)2 ∣∣∣θ̂ · î∣∣∣2
=

k4

(4πε0E0)
2

(
4πε0E0a

3
)2( ε− ε0

ε+ 2ε0

)2

|cos θ cosϕ|2

=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ cos2 ϕ
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Notice that k4a6 has units of area as expected. If we measure the polarization in the ϕ̂ direction, we have

dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = î

)
=

k4

(4πε0E0)
2 |ε
∗ · p|2

=
k4

(4πε0E0)
2

∣∣∣∣ϕ̂ · 4πε0E0a
3

(
ε− ε0
ε+ 2ε0

)
î

∣∣∣∣2
=

(
ε− ε0
ε+ 2ε0

)2

k4a6
∣∣∣ϕ̂ · î∣∣∣2

=

(
ε− ε0
ε+ 2ε0

)2

k4a6 sin2 ϕ

If we want the initial polarization to be in the y-direction, it is simply a matter of replacing ϕ by ϕ− π
2

in the results above. For outgoing polarization in the θ̂ direction this gives,

dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = ĵ

)
=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ cos2
(
ϕ− π

2

)
=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ sin2 ϕ

while for the polarization in the ϕ̂ direction, we have

dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = ĵ

)
=

(
ε− ε0
ε+ 2ε0

)2

k4a6 sin2
(
ϕ− π

2

)
=

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 ϕ

2.3 Unpolarized incoming wave
When the incoming light is unpolarized, we average over the possible incoming polarizations. For outgoing
polarization in the θ̂ direction, this gives

dσ

dΩ

(
n, ε = θ̂,n0 = k̂

)
=

1

2

[
dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = î

)
+
dσ

dΩ

(
n, ε = θ̂,n0 = k̂, ε0 = ĵ

)]
=

1

2

[(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ cos2 ϕ+

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ sin2 ϕ

]

=
1

2

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 θ

which depends only on θ, while for the outgoing polarization in the ϕ̂ direction,

dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂

)
=

1

2

[
dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = î

)
+
dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂, ε0 = ĵ

)]
=

1

2

[(
ε− ε0
ε+ 2ε0

)2

k4a6 sin2 ϕ+

(
ε− ε0
ε+ 2ε0

)2

k4a6 cos2 ϕ

]

=
1

2
k4a6

(
ε− ε0
ε+ 2ε0

)2

which has no angular dependence. There is no preferred ϕ dependence in either case.
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2.4 Final polarization not measured
As a final possibility, suppose we have unpolarized light coming in, and we do not measure the outgoing
polarization. Then the result is the sum of the results for the outgoing radiation,

dσ

dΩ

(
n,n0 = k̂

)
=

dσ

dΩ

(
n, ε = θ̂,n0 = k̂

)
+
dσ

dΩ

(
n, ε = ϕ̂,n0 = k̂

)
=

1

2
k4a6

(
ε− ε0
ε+ 2ε0

)2 (
1 + cos2 θ

)
2.5 Total cross-section
The total light scattered gives an estimate of the size of the scatterer. In the present case, for unpolarized
light, we integrate over all angles,

σ =

ˆ
dσ

=

π̂

0

2πˆ

0

1

2
k4a6

(
ε− ε0
ε+ 2ε0

)2 (
1 + cos2 θ

)
dΩ

The integral is
¨ (

1 + cos2 θ
)

dΩ =
16π

3

so the total cross section is

σ =
8

3
πa2

(
ε− ε0
ε+ 2ε0

)2

k4a4

which in this case is the cross-sectional area, πa2, times a dimensionless factor depending on the ratio a
λ .

3 Example 2: Scattering by a small, perfectly conducting sphere
For a perfectly conducting sphere, the boundary conditions change. In problem 1 you are asked to work out
this case, so here we simply state the results for the electric and magnetic dipole strengths:

p = 4πε0a
3Einc

m = −2πa3Hinc

For linear polarization, Einc and Hinc are orthogonal and orthogonal to the direction of propagation,

Einc = Eincε̂0e
in0·x−iωt

Hinc =
1

µ0c
n0 ×Einc

so the dipole strengths are perpendicular as well. We can immediately write the differential cross-section,

dσ

dΩ
(n, ε,n0, ε0) =

k4

(4πε0Einc)
2

∣∣∣∣ε∗ · p +
1

c
m · (n× ε∗)

∣∣∣∣2
=

k4

(4πε0Einc)
2

∣∣∣∣ε∗ · (4πε0a3Einc
)
− 2πa3

c
Hinc · (n× ε∗)

∣∣∣∣2
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=
k4

(4πε0Einc)
2

∣∣∣∣ε∗ · (4πε0a3Einc
)
− 2πa3 1

µ0c2
(n0 ×Einc) · (n× ε∗)

∣∣∣∣2
=

k4

(4πε0)
2

∣∣ε∗ · (4πε0a3ε̂0

)
− 2πa3ε0 (n0 × ε̂0) · (n× ε∗)

∣∣2
= k4a6

∣∣∣∣ε∗ · ε̂0 −
1

2
(n0 × ε̂0) · (n× ε∗)

∣∣∣∣2
Now compute the differential cross-section in the case of unpolarized incident light. This means we

average over incident polarizations, ε̂0‖ and ε̂0⊥, where

ε̂0⊥ =
1

sin θ
(n0 × n)

ε̂0‖ =
1

sin θ
(n0 × n)× n0

to find

dσ

dΩ
(n, ε,n0, ε0) =

1

2

∑
ε̂0‖,ε̂0⊥

k4a6

∣∣∣∣ε∗ · ε̂0 −
1

2
(n0 × ε̂0) · (n× ε∗)

∣∣∣∣2
For the outgoing polarization perpendicular to the plane of incidence we still have

ε⊥ =
1

sin θ
n0 × n

but for the outgoing polarization perpendicular to the plane of incidence we need

ε‖ =
1

sin θ
(n0 × n)× n

Notice that

ε̂0⊥ · ε⊥ = 1

ε̂0⊥ · ε‖ = 0

ε̂0‖ · ε⊥ = 0

ε̂0‖ · ε‖ = cos θ

Outgoing polarization parallel to the plane of incidence For the parallel case, working through the
vector products, we will need

ε∗‖ · ε̂0‖ = cos θ

ε∗‖ · ε̂0⊥ = 0

1

2
(n0 × ε̂0⊥) ·

(
n× ε∗‖

)
=

1

2
(n0 × ε̂0⊥) ·

(
n× ε‖

)
= 0

1

2

(
n0 × ε̂0‖

)
·
(
n× ε∗‖

)
=

1

2

(
n0 × ε̂0‖

)
·
(
n× ε‖

)
=

1

2

(
n0 × ε̂0‖

)
·
(
n× ε‖

)
=

1

2

7



Therefore,

dσ‖

dΩ
=

1

2

∑
ε̂0‖,ε̂0⊥

k4a6

∣∣∣∣ε∗‖ · ε̂0 −
1

2
(n0 × ε̂0) ·

(
n× ε∗‖

)∣∣∣∣2

=
1

2
k4a6

∣∣∣∣ε∗‖ · ε̂0‖ −
1

2

(
n0 × ε̂0‖

)
·
(
n× ε∗‖

)∣∣∣∣2 +
1

2
k4a6

∣∣∣∣ε∗‖ · ε̂0⊥ −
1

2
(n0 × ε̂0⊥) ·

(
n× ε∗‖

)∣∣∣∣2
=

1

2
k4a6

∣∣∣∣cos θ − 1

2

∣∣∣∣2
Outgoing polarization perpendicular to the plane of incidence For the perpendicular case, we need
the vector products

ε∗⊥ · ε̂0‖ = 0

ε∗⊥ · ε̂0⊥ = 1

1

2
(n0 × ε̂0⊥) · (n× ε∗⊥) =

1

2
(n0 × ε̂0⊥) · (n× ε⊥)

=
1

2
cos θ

1

2

(
n0 × ε̂0‖

)
· (n× ε∗⊥) =

1

2

(
n0 × ε̂0‖

)
· (n× ε⊥)

= 0

so the perpendicular contribution to the differential cross-section is

dσ⊥
dΩ

=
1

2
k4a6

∣∣∣∣ε∗⊥ · ε̂0‖ −
1

2

(
n0 × ε̂0‖

)
· (n× ε∗⊥)

∣∣∣∣2 +
1

2
k4a6

∣∣∣∣ε∗⊥ · ε̂0⊥ −
1

2
(n0 × ε̂0⊥) · (n× ε∗⊥)

∣∣∣∣2
=

1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2
=

1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2
If the final polarization is unmeasured, we sum these, giving

dσ

dΩ
=

dσ‖

dΩ
+
dσ⊥
dΩ

=
1

2
k4a6

∣∣∣∣cos θ − 1

2

∣∣∣∣2 +
1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2
=

1

2
k4a6

[(
cos2 θ − cos θ +

1

4

)
+

(
1− cos θ +

1

4
cos2 θ

)]
=

1

2
k4a6

[
5

4
− 2 cos θ +

5

4
cos2 θ

]
= k4a6

[
5

8
− cos θ +

5

8
cos2 θ

]
We define the polarization of the scattered radiation to be the difference between the parallel and per-

pendicular cross-sections, normalized by the total differential cross-section,

Π ≡ 1
dσ
dΩ

[
dσ⊥
dΩ
−
dσ‖

dΩ

]
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=
1

k4a6
[

5
8 cos2 θ − cos θ + 5

8

] [1

2
k4a6

∣∣∣∣1− 1

2
cos θ

∣∣∣∣2 − 1

2
k4a6

∣∣∣∣cos θ − 1

2

∣∣∣∣2
]

=
1

5
8 cos2 θ − cos θ + 5

8

[
1

2

(
1− cos θ +

1

4
cos2 θ

)
− 1

2

(
cos2 θ − cos θ +

1

4

)]
=

1
5
8 cos2 θ − cos θ + 5

8

[
3

8
− 3

8
cos2 θ

]
=

3 sin2 θ

5 cos2 θ − 8 cos θ + 5

4 Collections of scatterers
When light travels through a medium, it encounters many scatterers, so the scattering is a superposition of
the results of many scatterings. Suppose there are scatterers located at positions, xi. Then since the fields
vary as eik·x there will be factors

E (xi) ,B (xi) ∼ eikn0·xi

associated with the corresponding induced dipole moments,

pi,mi ∼ eikn0·xi

Recalling that the total differential cross-section depends on E×B∗, we will have a sum over conjugate pairs
of phase factors:

dσ

dΩ
=

k4

(4πε0E0)
2

∣∣∣∣∣∣
∑
i,j

[
ε∗ · pi +

1

c
mi · (n× ε∗)

]
eikn0·xie−ikn·xi

∣∣∣∣∣∣
2

Define
ikq · xi ≡ ik (n0 − n) · xi

and assume all the scatterers are identical, so that

pi = p

mi = m

Then the sum applies only to the phase factor, giving an overall factor of

F (q) =

∣∣∣∣∣∑
i

eikq·xi

∣∣∣∣∣
2

=
∑
i

eikq·xi

∑
j

e−ikq·xj

=
∑
i,j

eikq·(xi−xj)

There are two important limiting cases of this. When the scatterers are randomly distributed, as in a gas,
the different phases tend to cancel, so only the diagonal terms contribute,

F (q) =
∑
i=j

eikq·(xi−xj)

=
∑
i=j

1

= N
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where N is the total number of scatterers. The second limiting case is when the scatterers form some sort of
regular lattice. For a perfect lattice, the same thing happens, with the effect of a scatterer at xi cancelling
the effect of another scatterer at −xi. The wave progresses only in the forward direction (picture a clear
crystal of pure quartz, for example). Scatterings do occur as a result of thermal vibrations which make the
lattice imperfect. Jackson gives and explicit example of an exact result in eq.(10.20).

10


