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We carry our solution for the vector potential, nmm

A (x) =
µ0

4π

ˆ
d3x′

J (x′) eik|x−x
′|

|x− x′|

to the next higher order in the radiation zone. Before starting, we develop an identity relating moments of
the charge density to moments of the current.

1 Current dipole contribution to the vector potential
Expand the exact expression for the vector potential above, and expand to the next order:

A (x) =
µ0

4π

eikr

r

ˆ
d3x′

J (x′) e−ikr̂·x
′

1− 1
r r̂ · x′

=
µ0

4π

eikr

r

ˆ
d3x′J (x′) (1− ikr̂ · x′)

(
1 +

1

r
r̂ · x′

)
=

µ0

4π

eikr

r

ˆ
d3x′J (x′) +

µ0

4π

eikr

r

ˆ
d3x′J (x′)

(
−ikr̂ · x′ + 1

r
r̂ · x′

)
We know that the first term on the right leads to electric dipole radiation. Suppose this term vanishes, so
that the radiation is described by the next order terms:

A (x) =
µ0

4π

eikr

r

(
1

r
− ik

)ˆ
d3x′J (x′) (r̂ · x′)

This now involves the next higher moment of the current,
ˆ
d3x′J (x′) (n̂ · x′)

We can express this dipole moment of the current density in terms of moments of the charge distribution
and the magnetic dipole moment density. This separates electric and magnetic parts of the radiation.
Starting with the magnetic moment density

M =
1

2
(x′ × J (x′))

we take a second cross product with the unit vector in the direction of the observation,

r̂×M =
1

2
r̂× (x′ × J)

=
1

2
((r̂ · J)x′ − (r̂ · x′)J)
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so that
J (x′) (r̂ · x′) = x′ (r̂ · J)− 2r̂×M

Writing half of J (x′) (r̂ · x′) using this identity, we have
ˆ
d3x′J (x′) (r̂ · x′) =

ˆ
d3x′

1

2
(J (r̂ · x′) + x′ (r̂ · J)− 2r̂×M)

=

ˆ
d3x′

(
1

2
(J (r̂ · x′) + x′ (r̂ · J))− r̂×M

)
The first pair of terms give the integral of a symmetrized product,

1

2
r̂k

ˆ
d3x′ (Jix

′
k + x′iJk)

and this integral may be related to the charge density by working with the integral of the divergence of
x′ix
′
jJ. First expand the divergence,

∇′ ·
(
x′ix
′
jJ
)

=

3∑
k=1

∂

∂x′k

(
x′ix
′
jJk
)

=

3∑
k=1

(
δikx

′
jJk + x′iδjkJk + x′ix

′
j∇
′ · J

)
= x′jJi + x′iJj + iωx′ix

′
jρ (x′)

where in the last step we have used the continuity equation,

0 =
∂ρ

∂t
+ ∇ · J = −iωρ+ ∇ · J

Now, since the integral of the divergence becomes a surface term at infinity where the current vanishes, we
have

0 =

ˆ
d3x′∇′ ·

(
x′ix
′
jJ
)

=

ˆ
d3x′

(
x′jJi + x′iJj + iωx′ix

′
jρ (x′)

)
giving the symmetrized integral we seek in terms of the quadrupole moment of the charge distribution,

1

2
r̂k

ˆ
d3x′ (Jix

′
k + x′iJk) = −iω 1

2
r̂k

ˆ
d3x′ x′ix

′
kρ (x′)

Finally, notice that

r̂k

ˆ
d3x′ δikr

′2ρ = (∇ir)
ˆ
d3x′ r′2ρ (x′)

Adding and subtracting a iω
6 δij times this gradient, gives

r̂k

ˆ
d3x′ (x′kJi + x′iJk) = −iωr̂k

ˆ
d3x′

1

6

(
3x′ix

′
k − δikr′2

)
ρ (x′)− iω

6

(ˆ
d3x′ δikr

′2ρ (x′)

)
∇kr

= −1

6
iωr̂k

ˆ
d3x′

(
3x′ix

′
k − δikr′2

)
ρ (x′)− iω

6

(ˆ
d3x′ r′2ρ (x′)

)
∇ir

so we may identify the first integral as the quadrupole moment,

Qik ≡
ˆ
d3x′

(
3x′ix

′
k − δikr′2

)
ρ (x′)
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To clean up the result, we define the vector Q (r̂) with

[Q (r̂)]i ≡
∑
k

r̂kQik

and the second integral is the constant

T ≡
ˆ
d3x′ r′2ρ (x′)

The integral over the magnetic dipole density is the magnetic dipole moment,

m =

ˆ
d3xM

so the vector potential becomes

A (x) =
µ0

4π

eikr

r

(
1

r
− ik

)ˆ
d3x′J (x′) (r̂ · x′)

=
µ0

4π

eikr

r

(
1

r
− ik

)(
−1

6
iωQ (r̂)− r̂×m

)
− iωT

6

µ0

4π

eikr

r

(
1

r
− ik

)
∇r

Since the final term has the form f (r)∇r, it is a total gradient; its curl vanishes and it makes no contribution
to the fields. We may drop it without consequence to write the vector potential as

A (x) =
µ0

4π

ikeikr

r

(
1− 1

ikr

)(
iω

6
Q (r̂) + r̂×m

)
At this order of perturbation the vector potential has an electric quadrupole contribution and a magnetic
dipole contribution.

2 The electric and magnetic fields

2.1 Magnetic dipole radiation
The fields are now found in the usual way. The magnetic dipole potential is

A (x) =
µ0

4π

ikeikr

r

(
1− 1

ikr

)
r̂×m

In calculating the electric dipole radiation, we showed that

E (r) =
ik

4πε0
∇×

((
1− 1

ikr

)
eikr

r
r̂× p

)
=

1

4πε0

eikr

r

[
k2r̂× (p× r̂) +

ik

r

(
1− 1

ikr

)
(p− 3 (p · r̂) r̂)

]
so that

∇×
(
ik

(
1− 1

ikr

)
eikr

r
r̂× p

)
=

eikr

r

[
k2r̂× (p× r̂) +

ik

r

(
1− 1

ikr

)
(p− 3 (p · r̂) r̂)

]
Now, using this same derivative with p replaced by m to find the magnetic field for dipole radiation,

H (x) =
1

µ0
∇×A

=
1

4π
∇×

(
ikeikr

r

(
1− 1

ikr

)
r̂×m

)
=

1

4π

eikr

r

[
k2r̂× (m× r̂) +

ik

r

(
1− 1

ikr

)
(m− 3 (m · r̂) r̂)

]
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At sufficiently large r, the magnetic field approaches

H (x) =
1

4π

k2eikr

r
r̂× (m× r̂)

which is transverse to the radially propagating wave.
The Maxwell equations for harmonic sources tell us that the electric field is given in terms of the potentials

by
E = iωA−∇Φ

and the absence of lower multipoles shows that

∇ ·E = 0

so that Φ = 0. Therefore,

E =
iωµ0

4π

ikeikr

r

(
1− 1

ikr

)
r̂×m

Using Zc = 1
ε0

and ω = kc,

E = − Z

4π

k2eikr−iωt

r

(
1− 1

ikr

)
r̂×m

This gives the fields produced by magnetic dipole radiation are therefore

H =
1

4π

eikr−iωt

r

[
k2r̂× (m× r̂) +

ik

r

(
1− 1

ikr

)
(m− 3 (m · r̂) r̂)

]
E = −Z0

4π
k2
(

1− 1

ikr

)
eikr−iωt

r
r̂×m

in complete analogy to the electric dipole field, but with magnetic and electric parts interchanged. In the
radiation zone, these become

H =
1

4π
k2
eikr−iωt

r
[r̂× (m× r̂)]

E = −Z0

4π
k2
eikr−iωt

r
r̂×m

and the fields become totally transverse.

2.2 Electric quadrupole radiation
For the quadrupole fields, we begin with the quadrupole piece of the vector potential

A (x) =
iωµ0

24π

ikeikr

r

(
1− 1

ikr

)
Q (r̂)

The magnetic field is then

H (x, t) =
1

µ0
∇×A (x)

Keeping only terms of order 1
r , this gives

H (x, t) =
1

µ0
∇×

[
iωµ0

24π

ikeikr

r
Q (r̂)

]
=

1

µ0

[
− iωk

2µ0

24π

eikr

r
r̂×Q (r̂)

]
= − ick

3

24π

eikr

r
r̂×Q (r̂)
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since the only derivative term that does not increase the power of 1
r is

[
iωµ0

24π
ik
r

(
∇eikr

)
×Q (r̂)

]
. The electric

field in this approximation is then

E = Z0H× r̂

= Z0

(
−ick3

24π

eikr

r
r̂×Q (r̂)

)
× r̂

= − ik3

24πε0

eikr

r
[r̂×Q (r̂)]× r̂

3 Radiated power
The energy per unit area carried by an electromagnetic wave is given by the Poynting vector,

S = E×H

For a plane wave, we have

E = E0 cos (k · x− ωt)

H =
1

µ

√
µε

1

k
k×E0 cos (k · x− ωt)

So

S =
c

8π
E×H∗

S = E×H

= E0 cos (k · x− ωt)×
(

1

µ

√
µε

1

k
k×E0 cos (k · x− ωt)

)
=

√
ε

µ

1

k
E0 × (k×E0) cos2 (k · x− ωt)

=

√
ε

µ

1

k
E2

0k cos2 (k · x− ωt)

with real part

S =

√
ε

µ

1

k
E2

0k cos2 (k · x− ωt)

with time average

S =

(
1

2

√
ε

µ
E2

0

)
k̂

For a complex representation of the wave,

E = E0e
i(k·x−ωt)

H =
1

µ

√
µε

1

k
k×E0e

i(k·x−ωt)

we may write the same quantity as

1

2
Re (E×H∗) =

1

2
Re

(
E0e

i(k·x−ωt) × 1

µ

√
µεk̂×E∗0e

−i(k·x−ωt)
)

=
1

2

√
ε

µ
|E0|2 k̂
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so the time-averaged energy flow per unit area per unit time is

S =
1

2
Re (E×H∗)

Now consider the average power carried off by electric dipole, electric quadrupole, and magnetic dipole
radiation.

3.1 Electric dipole
The radiation zone fields were found above to be

H (x, t) =
k2c

4π

eikr−iωt

r
r̂× p

E (x, t) =
k2

4πε0

eikr−iωt

r
r̂× (p× r̂)

so that

dP

dA
= r̂ · S

=
1

2
Re (r̂ · (E×H∗))

=
1

2
Re

(
k2

4πε0

1

r
r̂ ·
(

[r̂× (p× r̂)]× k2c

4π

1

r
[r̂× p]

))
=

ck4

32π2ε0

1

r2
|p|2 sin2 θ

=
c2k4
√
µ0ε0

32π2ε0

1

r2
|p|2 sin2 θ

=
c2Z0

32π2

1

r2
k4 |p|2 sin2 θ

This is the power per unit area. Since the area element at large distances is dA = r2dΩ, where Ω is the solid
angle, we may write the differential power radiated per unit solid angle using

dP

dA
=

1

r2
dP

dΩ

so that

dP

dΩ
=

c2Z0

32π2
k4 |p|2 sin2 θ

3.2 Magnetic dipole
The radiation zone fields for magnetic dipole radiation are

H (x, t) =
k2

4π

eikr−iωt

r
r̂× (m× r̂)

E (x, t) = −Z0k
2

4π

eikr−iωt

r
r̂×m

so the result is the same as for the electric dipole with the substitution p −→m/c,

dP

dΩ
=

Z0

32π2
k4 |m|2 sin2 θ
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3.3 Electric quadrupole moment
For electric quadrupole radiation the fields are given by

H (x, t) =
−ick3

24π

eikr

r
r̂×Q (r̂)

E (x, t) = − ik3

24πε0

eikr

r
[r̂×Q (r̂)]× r̂

giving an average power per unit solid angle of

dP

dΩ
=

r2

2
|Re (E×H∗)|

=
r2

2

∣∣∣∣Re [(− ik3

24πε0

eikr

r
[r̂×Q (r̂)]× r̂

)
×
(
ick3

24π

e−ikr

r
r̂×Q (r̂)

)]∣∣∣∣
=

1

2

k3

24πε0

ck3

24π
|([r̂×Q (r̂)]× r̂)× (r̂×Q (r̂))|

=
ck6

1152π2ε0
|([r̂×Q (r̂)]× r̂)× (r̂×Q (r̂))|

=
Z0c

2

1152π2
k6 |[r̂×Q (r̂)]× r̂|2

Notice that the power radiated by the quadrupole moment depends on k6, whereas the power radiated
by the dipole moments both go as k4. This pattern continues for higher moments.

4 Higher moments of the current density
Higher multipole moments of the fields, will depend on higher moments of the current density. Here we
show that these higher moments may always be expressed in terms of moments of the charge density, and
moments of the magnetic moment density.

In our discussion of electric dipole radiation, we used the continuity equation to find the identity
ˆ
d3xJj (x) = iω

ˆ
d3xxjρ (x)

relating the zeroth moment of the current density to the first moment of the charge density. In the example
above, we found that the first moment of the current density may be written in terms of the magnetic dipole
moment density, and the quadrupole moment of charge density. We show here that in general that moments
of these two types of distributions are necessary: the moments of the current density may always be expressed
in terms of moments of the charge density and moments of the magnetic dipole moment density.

Define the nth moment of the charge density to be

pk1...kn ≡
ˆ
d3xxk1xk2 . . . xknρ (x)

and recall that the magnetic dipole moment is defined to be M = 1
2x × J. It is convenient to extract the

components of M,

Mij ≡ 1

2
(xiJj − xjJi)

soMi = 1
2

∑
j,k εijkMjk. This lets us exchange indices between J and x when computing moments,

xmJn = xnJm + 2Mmn
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Then we define the nth moment of the magnetic dipole moment to be

mk1k2...kn ≡
ˆ
d3xMk1k2xk3 . . . xkn

We now show that all moments of the current density may be expressed in terms of moments of the
charge density pk1...kn and moments of the magnetic dipole density, mk1...kn . The proof is by induction. We
know how the zeroth moment of the current may be expressed in terms of the first moment of the charge
density,

ˆ
d3xJj (x) = iω

ˆ
d3xxjρ (x)

Now, suppose we know that the first n− 1 moments of a current distribution, jk1...kn−1
, may be expressed in

terms of moments of the charge density, and moments of the magnetic dipole density, and consider the nth
moment of the current density,

jk1...kn ≡
ˆ
d3x xk1 . . . xknJ (x)

with components

jmk1...kn =

ˆ
d3x xk1 . . . xknJm

Since we are dealing with isolated systems, J (x) vanishes at infinity, so the integral of a total divergence
involving J (x) vanishes as well,

0 =

ˆ
d3x∇ · (xk1xk2 . . . xknJ (x))

=
∑
i

ˆ
d3x∇i (xk1xk2 . . . xknJi)

=
∑
i

ˆ
d3x

[(
δik1xk2 . . . xkn + xk1δik2 . . . xkn+1

+ . . .+ xk1xk2 . . . δikn
)
Ji + xk1xk2 . . . xkn∇iJi

]
=

ˆ
d3x

[
Jk1xk2 . . . xkn+1 + xk1Jk2 . . . xkn+1 + . . .+ xk1xk2 . . . Jkn + iωxk1xk2 . . . xknρ

]
Now, use the rearrangement result on the first n terms,

Jk1xk2 . . . xkn+1
+ . . .+ xk1xk2 . . . Jkn = nJk1xk2 . . . xkn + 2Mk1k2xk3 . . . xkn+1

+ . . .+ 2Mk1kn+1
xk2 . . . xkn

while the final term is the nth moment of the charge density, as desired.
Therefore,

0 =

ˆ
d3x

[
nJk1xk2 . . . xkn + 2Mk1k2xk3 . . . xkn+1

+ . . .+ 2Mk1kn+1
xk2 . . . xkn + iωxk1xk2 . . . xknρ

]
= njmk1...kn + 2Mk1k2k3...kn + 2Mk1k3k2k4...kn + . . .+ 2Mk1knk2k3...kn−1

+ iωpk1...kn

and we have shown that the nth moment of the current density may be expressed in terms of moments of
the magnetic dipole moment density and the electric charge density,

jmk1...kn =
2

n

(
Mk1k2k3...kn +Mk1k3k2k4...kn + . . .+Mk1knk2k3...kn−1

)
+
i

n
ωpk1...kn

Therefore, the result holds for all current density moments.
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