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1 The electromagnetic field of an isolated, oscillating source
Consider a localized, oscillating source, located in otherwise empty space. We know that the solution for the
vector potential (e.g. using the Green function for the outer boundary at infinity) is

A (x, t) =
µ0

4π

ˆ
d3x′
ˆ
dt′

J (x′, t′)

|x− x′|
δ

(
t′ − t+ 1

c
|x− x′|

)
Let the source fields be confined in a region d � λ where λ is the wavelength of the radiation, and let the
time dependence be harmonic, with frequency ω,

A (x, t) = A (x) e−iωt

J (x, t) = J (x) e−iωt

ρ (x, t) = ρ (x) e−iωt

Then

A (x) e−iωt =
µ0

4π

ˆ
d3x′
ˆ
dt′

J (x′) e−iωt
′

|x− x′|
δ

(
t′ − t+ 1

c
|x− x′|

)
=

µ0

4π

ˆ
d3x′

J (x′) e−iω(t−
1
c |x−x′|)

|x− x′|

so that with k = ω
c , we have

A (x) =
µ0

4π

ˆ
d3x′

J (x′) eik|x−x
′|

|x− x′|
These considerations mean that the entire source oscillates very nearly coherently. The characteristic time
of one oscillation of the source, ∼ λ

c , is much longer than the time it takes light to cross the source, ∼ d
c .

The electric and magnetic fields follow immediately. We know that B = ∇×A, so

H =
1

µ0
∇×A

while the Maxwell equation, ∇×H− ∂D
∂t = 0, shows that

−iω (ε0E) = ∇×H

Dividing by

−iωε0 = −ikcε0

= − ikε0√
µ0ε0

= −ik
√
ε0
µ0
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and defining the impedence of free space, Z =
√

µ0

ε0
, gives the electric field in the form

E =
iZ

k
∇×H

Now we consider the radiation. The problem divides into three approximate regions, depending on the
length scales d and λ. We assume d � λ. If r is the distance of the observation from the source, we will
consider

d � r � λ (static zone)

d � r ∼ λ (induction zone)

d � λ� r (radiation zone)

or simply the near, intermediate, and far zones.

1.1 Near zone
For the near zone,

kr =
2πr

λ
� 1

implies
eikr ≈ 1

and the potential becomes

A (x) =
µ0

4π
lim
kr→0

ˆ
d3x′

J (x′)

|x− x′|

=
µ0

4π
lim
kr→0

∑
l,m

4π

2l + 1

Ylm (θ, ϕ)

rl+1

ˆ
d3x′J (x′) r′lY ∗lm (θ′, ϕ′)

and the only time dependence is the sinusoidal oscillation, e−iωt. The spatial integration depends strongly
on the details of the source.

1.2 Far zone
The exponential becomes important in the radiation zone, kr � 1. Setting x = rr̂, we have

|x− x′| =
√
r2 + x′2 − 2rr̂ · x′

= r

√
1 +

x′2

r2
− 2

r
r̂ · x′

and since x′2 � r2, we may drop the quadratic term and approximate the square root,

|x− x′| ≈ r

√
1− 2

r
r̂ · x′

≈ r

(
1− 1

r
r̂ · x′

)
= r − r̂ · x′

The potential is then

A (x) =
µ0

4π

ˆ
d3x′

J (x′) eik(r−r̂·x
′)

r − r̂ · x′

2



For the lowest order approximation, we neglect the x′ term in the denominator,

A (x) =
µ0

4π

eikr

r

ˆ
d3x′

J (x′) e−ikr̂·x
′

1− 1
r r̂ · x′

=
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x

′
(
1 +

1

r
r̂ · x′

)
=

µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x

′

where the last step follows because d� λ implies 1
r r̂ · x

′ � kr̂ · x′.
For higher orders in kx′ / kd� 1, note that powers of kx′ decrease rapidly in magnitude. We can carry

a power series in kx′ to higher order N in kx′ ∼ kd as long as we can still neglect d
r ,

d

r
� (kd)

N

The expansion is then

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x

′

=
µ0

4π

eikr

r

∑
n=0

(−ik)n

n!

ˆ
d3x′J (x′) (r̂ · x′)n

and because each term is smaller than the last by a factor on the order of kd, it is only the lowest nonvanishing
moment of the current distribution ˆ

d3x′J (x′) (r̂ · x′)n

that dominates the radiation field.
The radiation zone solution is characteristic of radiation. Returning to lowest order

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x

′

we note that the integral contributes only angular dependence of the field,
ˆ
d3x′J (x′) e−ikr̂·x

′
= f (θ, ϕ)

so the waveform is

A (x) =
µ0

4π

eikr

r
f (θ, ϕ)

The potential is therefore a harmonic, radially-expanding waveform, with amplitude decreasing as 1
r ,

A (x, t) ∼ ei(kr−ωt)

r

The magnetic field is given by

B (x) = ∇×A (x)

= ∇×
(
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x

′
)

=
µ0

4π

[(
∇eikr

r

)
×
ˆ
d3x′J (x′) e−ikr̂·x

′
− eikr

r

ˆ
d3x′J (x′)×∇e−ikr̂·x

′
]

3



The first term is in the direction
r̂×
ˆ
d3x′J (x′) e−ikr̂·x

′

and therefore transverse. Since the gradient includes a term

∇eikr

r
∼ ikr̂e

ikr

r

the magnetic field will fall off as 1
r .

For the second term ˆ
d3x′J (x′)×∇e−ikr̂·x

′
=

ˆ
d3x′J (x′)×∇e−ik(x·x

′)/r

the gradient gives

∇e−ik(x·x
′)/r = e−ik(x·x

′)/r
(
− ikx

′

r
+
ikr̂ · x′

r
r̂

)
The second term is also transverse. For the remaining term,ˆ

d3x′ (x′ × J) e−ikr̂·x
′

we may think of the exponential as giving a modified source,

J̃ = Je−ikr̂·x
′

Then this integral is just twice the magnetic dipole moment of that modified source. We know that the
resulting magnetic field may be written as

B =
µ0

4π

[
3r̂ (r̂ ·m)−m

r3

]
Although this does have a radial component, the magnitude falls off as the cube of the distance, and is
therefore negligible. The magnetic field is therefore transverse to the radial direction of propagation.

The electric field is also dominated by the

∇eikr ∼ ikneikr

term, falling off as 1
r , and is therefore also transverse to the radial propagation.

1.3 Intermediate zone
In the intermediate zone, r ∼ λ, an exact expansion of the Green function is required. This is found by
expanding

G (x,x′) =
eik|x−x

′|

4π |x− x′|
in spherical harmonics,

G (x,x′) =
∑
l,m

glm (r, r′)Ylm (θ, ϕ)Y ∗lm (θ′, ϕ′)

and solving the rest of the Helmholtz equation for the radial function. The result is spherical Bessel functions,
jl (x) , nl (x), and the related spherical Henkel functions, h(1)l , h

(2)
l , which are essentially Bessel function times

1√
r
. They are discussed in Jackson, Section 9.6. The vector potential then takes the form

A (x) = ikµ0

∑
l,m

h
(1)
l (kr)Ylm (θ, ϕ)

ˆ
d3x′J (x′) jl (kr

′)Y ∗lm (θ′, ϕ′)

The spherical Bessel function may be expanded in powers of kr to recover the previous approximations.
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2 Explicit multipoles: n = 0 and n = 1
For higher multipoles (n > 0), we require the vector potential in order to get both magnetic and electric
fields. We can then find both fields using

H =
1

µ0
∇×A

E =
iZ

k
∇×H

Since there is no magnetic monopole field, we may use the scalar potential to demonstrate the absence of
monopole radiation.

2.1 Monopole field
The lowest order far field is the electric monopole field. For this it is easiest to use the solution for the scalar
potential, in terms of charge density,

φ (x, t) =
1

4πε0

ˆ
d3x′
ˆ
dt′
ρ (x′, t′)

|x− x′|
δ

(
t′ − t+ 1

c
|x− x′|

)
=

1

4πε0r

ˆ
d3x′
ˆ
dt′ρ (x′, t′) δ

(
t′ − t+ 1

c
|x− x′|

)
However, all charge is confined to a central region, and total charge is conserved. This means that the spatial
integral is independent of time,

qtot =

ˆ
d3x′ρ (x′, t′)

and the time integral of the delta function simply gives one. Therefore,

φ (x, t) =
qtot

4πε0r

The electric field is a static Coulomb field; there is no radiation.

2.2 Dipole field
If the first nonvanishing term in the multipole expansion,

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′) e−ikr̂·x

′

=
µ0

4π

eikr

r

∑
n=0

(−ik)n

n!

ˆ
d3x′J (x′) (r̂ · x′)n

is the lowest (n = 0), then we have

A (x) =
µ0

4π

eikr

r

ˆ
d3x′J (x′)

From the continuity equation, we have

0 =
∂ρ

∂t
+∇ · J

= −iωρ (x) +∇ · J
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Now, since the current vanishes at infinity, the integral of the divergence of xjJ (x′) must vanish:
ˆ
d3x′∇′ ·

(
x′jJ (x′)

)
=

ˆ
d2x′r̂′ ·

(
x′jJ (x′)

)
= 0

Then

0 =

ˆ
d3x′∇

′
·
(
x′jJ (x′)

)
=

∑
i

ˆ
d3x′∇

′

i

(
x′jJi (x

′)
)

=
∑
i

ˆ
d3x′

((
∇

′

ix
′
j

)
Ji (x

′) + x′j∇
′

iJi (x
′)
)

=
∑
i

ˆ
d3x′

(
δijJi (x

′) + x′j∇
′

iJi (x
′)
)

=

ˆ
d3x′

(
Jj (x

′) + x′j∇
′
· J
)

where the first integral is the one we require. Using the continuity equation to replace the divergence, we
have ˆ

d3x′Jj (x
′) = −

ˆ
d3x′ x′j∇

′
· J

= −iω
ˆ
d3x′ x′jρ (x

′)

This integral is the electric dipole moment,

p =

ˆ
d3x′ x′ρ (x′)

and the vector potential is

A (x) = − iωµ0

4π

eikr

r
p

The magnetic field is the curl of this,

H (x) =
1

µ0
∇×A

= − iω
4π

∇×
(
eikr

r
p

)
= − iω

4π

(
∇eikr

r
× p

)
= − iω

4π

∂

∂r

(
eikr

r

)
r̂× p

= − iω
4π

(
ikeikr

r
− eikr

r2

)
r̂× p

=
ωk

4π

(
1− 1

ikr

)
eikr

r
r̂× p

=
k2c

4π

(
1− 1

ikr

)
eikr

r
r̂× p
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This is transverse to the radially propagating wave. For the electric field,

E =
iZ

k
∇×H

=
iZkc

4π
∇×

((
1− 1

ikr

)
eikr

r
r̂× p

)
Using

∇× (a× b) = a (∇ · b)− b (∇ · a) + (b ·∇)a− (a ·∇)b

with a =
(
1− 1

ikr

)
eikr

r r̂ and b = p, this becomes

E =
iZkc

4π

[
−p
(
∇ ·

[(
1− 1

ikr

)
eikr

r
r̂

])
+ (p ·∇)

[(
1− 1

ikr

)
eikr

r
r̂

]]
For the first term,

∇ · (r̂f (r)) = f∇ · r̂+ r̂ ·∇f

=
2

r
f +

∂f

∂r

so that with
∂

∂r

((
1− 1

ikr

)
eikr

r

)
=

1

ikr2
eikr

r
+

(
1− 1

ikr

)(
ik
eikr

r
− eikr

r2

)
=

(
1

ikr2
+ ik − 1

r
− 1

r
+

1

ikr2

)
eikr

r

=

(
ik − 2

r
+

2

ikr2

)
eikr

r

we have

∇ ·
[(

1− 1

ikr

)
eikr

r
r̂

]
=

2

r

((
1− 1

ikr

)
eikr

r

)
+

(
ik − 2

r
+

2

ikr2

)
eikr

r

=

(
2

r
− 2

ikr2
+ ik − 2

r
+

2

ikr2

)
eikr

r

=
ikeikr

r

We compute the second term in the brackets for E using the identity

(a ·∇) (r̂f (r)) = r̂ (a ·∇f) + f (a ·∇) r̂

= r̂ (a · r̂) ∂f
∂r

+ f (a ·∇) r̂

Since r̂ is constant in the r direction, (a ·∇) r̂ depends only on the angular derivatives,

(a ·∇) r̂ =
1

r
aθ

∂

∂θ
(sin θ cosϕi+ sin θ sinϕj+ cos θk) +

1

r sin θ
aϕ

∂

∂ϕ
(sin θ cosϕi+ sin θ sinϕj+ cos θk)

=
1

r
aθ (cos θ cosϕi+ cos θ sinϕj− sin θk) +

1

r sin θ
aϕ (− sin θ sinϕi+ sin θ cosϕj)

=
1

r
aθ (cos θρ̂− sin θk) +

1

r
aϕϕ̂

=
1

r

(
aθθ̂ + aϕϕ̂

)
=

1

r
a⊥

=
1

r
(a− (a · r̂) r̂)
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Thus, the second term is

(p ·∇)

[(
1− 1

ikr

)
eikr

r
r̂

]
= r̂ (p · r̂) ∂

∂r

((
1− 1

ikr

)
eikr

r

)
+

(
1− 1

ikr

)
eikr

r

1

r
(p− (p · r̂) r̂)

= r̂ (p · r̂)
(
ik − 2

r
+

2

ikr2

)
eikr

r
+

(
1− 1

ikr

)
eikr

r

1

r
(p− (p · r̂) r̂)

=

((
ik − 3

r
+

3

ikr2

)
(p · r̂) r̂+

(
1

r
− 1

ikr2

)
p

)
eikr

r

Combining these results, and using Zc =
√

µ0

ε0

√
1

µ0ε0
= 1

ε0
,

E =
ik

4πε0

[
−p
(
∇ ·

[(
1− 1

ikr

)
eikr

r
r̂

])
+ (p ·∇)

[(
1− 1

ikr

)
eikr

r
r̂

]]
=

ik

4πε0

[
− ike

ikr

r
p+

((
ik − 3

r
+

3

ikr2

)
(p · r̂) r̂+

(
1

r
− 1

ikr2

)
p

)
eikr

r

]
=

ik

4πε0

eikr

r

[(
1

r
− 1

ikr2
− ik

)
p+

(
ik − 3

r
+

3

ikr2

)
(p · r̂) r̂

]
=

1

4πε0

eikr

r

[(
ik

r
− 1

r2
+ k2

)
p+

(
−k2 − 3ik

r
+

3

r2

)
(p · r̂) r̂

]
Rearranging terms,

E =
1

4πε0

eikr

r

[
k2 (p− (p · r̂) r̂) + ik

r

(
1− 1

ikr

)
(p− 3 (p · r̂) r̂)

]
Finally, noting that

r̂× (p× r̂) = p− (p · r̂) r̂

we see that this is equivalent to the expression in Jackson. Notice that the first term is transverse, but not
the second.

The electric and magnetic fields for an oscillating dipole field are therefore,

H (x, t) =
k2c

4π

(
1− 1

ikr

)
eikr−iωt

r
r̂× p

E (x, t) =
1

4πε0

eikr−iωt

r

[
k2r̂× (p× r̂) +

ik

r

(
1− 1

ikr

)
(p− 3 (p · r̂) r̂)

]
In the radiation zone, kr � 1, these simplify to

H (x, t) =
k2c

4π

eikr−iωt

r
r̂× p

E (x, t) =
k2

4πε0

eikr−iωt

r
r̂× (p× r̂)

= Z0H× r̂

while in the near zone, kr � 1,

H (x, t) =
ikc

4π

1

r2
eikr−iωtr̂× p

E (x, t) =
1

4πε0r3
eikr−iωt (3 (p · r̂) r̂− p)
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Notice that in the near zone, the electric field is just e−iωt times a static dipole field, while

H =
kr

Z

1

4πε0

p

r3

E =
1

4πε0

p

r3
|3 (p̂ · r̂) r̂− p̂|

so that H � E.
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