Propagation of a Gaussian wave packet

February 15, 2016

We study the time evolution of an initially Gaussian pulse.

1 Gaussian integrals

Before starting our example, we show how to find the integral of a Gaussian curve,

$$
I=\int_{-\infty}^{\infty} d x e^{-\left(x-x_{0}\right)^{2} / 2 \sigma^{2}}
$$

First, change the integration variable to

$$
\xi=\frac{x-x_{0}}{\sqrt{2} \sigma}
$$

so that

$$
I=\sqrt{2 \sigma^{2}} \int_{-\infty}^{\infty} d \xi e^{-\xi^{2}}
$$

Now square I,

$$
\begin{aligned}
I^{2} & =2 \sigma^{2} \int_{-\infty}^{\infty} d \xi_{1} e^{-\xi_{1}^{2}} \int_{-\infty}^{\infty} d \xi_{2} e^{-\xi_{2}^{2}} \\
& =2 \sigma^{2} \int_{-\infty}^{\infty} d \xi_{1} \int_{-\infty}^{\infty} d \xi_{2} e^{-\left(\xi_{1}^{2}+\xi_{2}^{2}\right)}
\end{aligned}
$$

and change to polar coordinates, where $\rho^{2}=\xi_{1}^{2}+\xi_{2}^{2}$ and $d \xi_{1} d \xi_{2}=\rho d \rho d \varphi$. Then

$$
\begin{aligned}
I^{2} & =2 \sigma^{2} \int_{0}^{2 \pi} d \varphi \int_{0}^{\infty} \rho d \rho e^{-\rho^{2}} \\
& =4 \pi \sigma^{2} \int_{0}^{\infty} \rho d \rho e^{-\rho^{2}}
\end{aligned}
$$

and another change of variable to $\lambda=\rho^{2}$ gives a simple exponential, with $\int_{0}^{\infty} d \lambda e^{-\lambda}=1$,

$$
\begin{aligned}
I^{2} & =2 \pi \sigma^{2} \int_{0}^{\infty} d \lambda e^{-\lambda} \\
& =2 \pi \sigma^{2}
\end{aligned}
$$

Therefore,

$$
\int_{-\infty}^{\infty} d x e^{-\left(x-x_{0}\right)^{2} / 2 \sigma^{2}}=\sqrt{2 \pi \sigma^{2}}
$$

2 Initial conditions and the mode amplitude

We begin with an initially Gaussian pulse

$$
u(x, 0)=e^{-x^{2} / 2 L^{2}} e^{i k_{0} x}
$$

with zero initial rate of change,

$$
\frac{\partial u}{\partial t}(x, 0)=0
$$

We use these initial data to find $A(k)$, then use $A(k)$ to find $u(x, t)$.
The solution for $A(k)$ is found by integrating over the initial conditions

$$
A(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x\left(u(x, 0)-\frac{i}{\omega(k)} \frac{\partial u}{\partial t}(x, 0)\right) e^{-i k x}
$$

Substituting for $u(x, 0)$ and $\frac{\partial u}{\partial t}(x, 0)$ gives a Gaussian integral,

$$
A(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-x^{2} / 2 L^{2}} e^{i k_{0} x} e^{-i k x}
$$

For the integral of a Gaussian, see the final section. integral, we add and subtract a constant to complete the square in the exponent,

$$
\begin{aligned}
-\frac{1}{2 L^{2}}\left(x^{2}-2 i L^{2}\left(k-k_{0}\right) x\right) & =-\frac{1}{2 L^{2}}\left[\left(x^{2}-2 i L^{2}\left(k-k_{0}\right) x+\left(i L^{2}\left(k-k_{0}\right)\right)^{2}\right)-\left(i L^{2}\left(k-k_{0}\right)\right)^{2}\right] \\
& =-\frac{1}{2 L^{2}}\left(x-i L^{2}\left(k-k_{0}\right)\right)^{2}-\frac{1}{2} L^{2}\left(k-k_{0}\right)^{2}
\end{aligned}
$$

Then, performing the Gaussian integral,

$$
\begin{aligned}
\int_{-\infty}^{\infty} d x e^{-x^{2} / 2 L^{2}} e^{-i k x} e^{i k_{0} x} & =\int_{-\infty}^{\infty} d x e^{-\frac{1}{2 L^{2}}\left(x-i L^{2}\left(k-k_{0}\right)\right)^{2}-\frac{1}{2} L^{2}\left(k-k_{0}\right)^{2}} \\
& =e^{-\frac{1}{2} L^{2}\left(k-k_{0}\right)^{2}} \int_{-\infty}^{\infty} d x e^{-\frac{1}{2 L^{2}}\left(x-i L^{2}\left(k-k_{0}\right)\right)^{2}} \\
& =\sqrt{2 \pi L^{2}} e^{-\frac{1}{2} L^{2}\left(k-k_{0}\right)^{2}}
\end{aligned}
$$

Therefore, the mode amplitudes follow a Gaussian as well,

$$
\begin{aligned}
A(k) & =\frac{1}{\sqrt{2 \pi}}\left(\sqrt{2 \pi} L e^{\frac{1}{2 L^{2}}\left[i L^{2}\left(k-k_{0}\right)\right]^{2}}\right) \\
& =L e^{-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}}
\end{aligned}
$$

3 Dispersion relation

The time dependence of the wave packet is now given by

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k\left[A(k) e^{i(k x-\omega t)}+A^{*}(k) e^{-i(k x-\omega t)}\right] \\
& =\frac{1}{2} \frac{L}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k e^{-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}}\left(e^{i(k x-\omega t)}+e^{-i(k x-\omega t)}\right) \\
& =\frac{L}{\sqrt{2 \pi}} \mathcal{R} e \int_{-\infty}^{\infty} d k e^{-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}} e^{i(k x-\omega t)}
\end{aligned}
$$

where $\omega=\omega(k)$.
Therefor, to continue, we need the form of of the dispersion relation, $\omega(k)$. Consider the case of highfrequency waves in plasma, for which we found

$$
\omega=\sqrt{k^{2} c^{2}+\omega_{p}^{2}}
$$

Now we let $\omega_{P} \gg k c$ so that we may expand the square root,

$$
\begin{aligned}
\omega & \approx \omega_{P}\left(1+\frac{c^{2}}{2 \omega_{P}^{2}} k^{2}\right) \\
& \approx \omega_{P}\left(1+\frac{1}{2} l_{P}^{2} k^{2}\right)
\end{aligned}
$$

where we define the plasma wavelength, $l_{P}=\frac{c}{\omega_{P}}$. This gives our dispersion relation. The group velocity is

$$
v_{g}=\frac{d \omega}{d k}=\omega_{P} l_{P}^{2} k
$$

so the group velocity evaluated at the center of the packet is

$$
v_{0} \equiv \omega_{P} l_{P}^{2} k_{0}
$$

and we may write

$$
\omega \approx \omega_{P}+\frac{1}{2} k v_{g}
$$

Notice that the approximation means that

$$
\begin{aligned}
\frac{v_{g}}{c} & =\frac{1}{2 c} l_{P}^{2} \omega_{P} k \\
& =\frac{1}{2 \omega_{P}} k c \\
& \ll 1
\end{aligned}
$$

so the group velocity is much less than the speed of light.
Notice that this form also works for a Klein-Gordon matter wave when the momentum due to mass is much greater than the wave momentum, $m c \gg \hbar k$. Expanding,

$$
\omega=\sqrt{\frac{m^{2} c^{4}}{\hbar^{2}}+k^{2} c^{2}}
$$

$$
\begin{aligned}
& =\frac{m c^{2}}{\hbar} \sqrt{1+\frac{\hbar^{2} k^{2} c^{2}}{m^{2} c^{4}}} \\
& \approx \frac{m c^{2}}{\hbar}\left(1+\frac{1}{2} \frac{\hbar^{2}}{m^{2} c^{2}} k^{2}\right) \\
& =\omega_{C}\left(1+\frac{1}{2} \lambda^{2} k^{2}\right) \\
& =\omega_{C}+\frac{1}{2} k v_{g}
\end{aligned}
$$

where $\lambda_{C}=\frac{\hbar}{m c}$ is the Compton wavelength and $\omega_{C}=\frac{c}{\lambda_{C}}$ the corresponding frequency. We continue below with a wave packet in plasma.

4 Time evolution of the waveform

With this dispersion relation, $\omega=\omega_{P}+\frac{1}{2} k v_{g}$, the full time evolution of the wave is given by

$$
u(x, t)=\frac{L}{\sqrt{2 \pi}} \mathcal{R} e \int_{-\infty}^{\infty} d k e^{-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}} e^{i\left(k x-\omega_{P}+\frac{1}{2} k v_{g} t\right)}
$$

Substititing for ω we have another Gaussian integral,

$$
\begin{aligned}
u(x, t) & =\frac{L}{\sqrt{2 \pi}} \mathcal{R} e \int_{-\infty}^{\infty} d k e^{-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}} e^{i\left(k x-\left(\omega_{P}\left(1+\frac{1}{2} l_{P}^{2} k^{2}\right)\right) t\right)} \\
& =\frac{L}{\sqrt{2 \pi}} \operatorname{Re} \int_{-\infty}^{\infty} d k \exp \left[-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}+i k x-i \omega_{P} t-\frac{i}{2} \omega_{P} l_{P}^{2} k^{2} t\right]
\end{aligned}
$$

Expanding the exponent,

$$
\begin{aligned}
-\frac{L^{2}}{2}\left(k-k_{0}\right)^{2}+i k x-i \omega_{P} t-\frac{i}{2} \omega_{P} l_{P}^{2} k^{2} t & =-\frac{L^{2}}{2}\left(\left(k-k_{0}\right)^{2}-\frac{2}{L^{2}} i k x+\frac{2}{L^{2}} i \omega_{P} t+\frac{i}{2} \frac{2}{L^{2}} \omega_{P} l_{P}^{2} k^{2} t\right) \\
& =-\frac{L^{2}}{2}\left(k^{2}-2 k k_{0}+k_{0}^{2}-\frac{2 i x}{L^{2}} k+\frac{2}{L^{2}} i \omega_{P} t+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}} k^{2}\right) \\
& =-\frac{L^{2}}{2}\left(\left(1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}\right) k^{2}-2\left(k_{0}+\frac{i x}{L^{2}}\right) k\right)-\frac{L^{2}}{2}\left(k_{0}^{2}+\frac{2}{L^{2}} i \omega_{P} t\right)
\end{aligned}
$$

we complete the square,

$$
\begin{aligned}
\left(1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}\right) k^{2}-2\left(k_{0}+\frac{i x}{L^{2}}\right) k & =\left(k \sqrt{1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}}-\frac{k_{0}+\frac{i x}{L^{2}}}{\sqrt{1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}}}\right)^{2}-\left(\frac{k_{0}+\frac{i x}{L^{2}}}{\sqrt{1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}}}\right)^{2} \\
& =\left(1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}\right)\left(k-\frac{k_{0}+\frac{i x}{L^{2}}}{1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}}\right)^{2}-\frac{\left(k_{0}+\frac{i x}{L^{2}}\right)^{2}}{1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}}
\end{aligned}
$$

Two constant exponentials,

$$
\exp \left[-\frac{L^{2}}{2}\left(k_{0}^{2}+\frac{2}{L^{2}} i \omega_{P} t\right)+\frac{L^{2}}{2} \frac{\left(k_{0}+\frac{i x}{L^{2}}\right)^{2}}{1+\frac{i \omega_{P} l_{P}^{2} t}{L^{2}}}\right]=\exp \left[-\frac{1}{2}\left(k_{0}^{2} L^{2}+2 i \omega_{P} t\right)+\frac{1}{2} \frac{\left(k_{0} L^{2}+i x\right)^{2}}{L^{2}+i \omega_{P} l_{P}^{2} t}\right]
$$

come out of the integral, while the remaining Gaussian integral gives

$$
\int_{-\infty}^{\infty} d k \exp \left(-\frac{1}{2}\left(L^{2}+i \omega_{P} l_{P}^{2} t\right)\left(k-\frac{k_{0}+\frac{i x}{L^{2}}}{1+\frac{i \omega_{P} l_{P} t}{L^{2}}}\right)^{2}\right)=\frac{\sqrt{2 \pi}}{\sqrt{L^{2}+i \omega_{P} l_{P}^{2} t}}
$$

Combining these,

$$
u(x, t)=\mathcal{R} e \frac{L}{\sqrt{L^{2}+i l_{P} c t}} \exp \left[-\frac{1}{2}\left(k_{0}^{2} L^{2}+2 i \omega_{P} t\right)+\frac{1}{2} \frac{\left(k_{0} L^{2}+i x\right)^{2}}{L^{2}+i l_{P} c t}\right]
$$

where we have used $l_{P} \omega_{P}=c$. We easily check that at $t=0$ we recover the initial state,

$$
\begin{aligned}
u(x, 0) & =\mathcal{R} e \exp \left[-\frac{1}{2}\left(k_{0}^{2} L^{2}\right)+\frac{1}{2} \frac{\left(k_{0} L^{2}+i x\right)^{2}}{L^{2}}\right] \\
& =\mathcal{R} e \exp \left[-\frac{1}{2}\left(k_{0}^{2} L^{2}\right)+\frac{1}{2} \frac{\left(k_{0} L^{2}+i x\right)^{2}}{L^{2}}\right] \\
& =e^{-x^{2} / 2 L^{2}} e^{i k_{0} x}
\end{aligned}
$$

5 Finding the real part

Finally, we find the real part of the waveform. Separating the real and imaginary parts of the argument of the exponential,

$$
\begin{aligned}
-\frac{1}{2}\left(k_{0}^{2} L^{2}+2 i \omega_{P} t\right)+\frac{1}{2} \frac{\left(k_{0} L^{2}+i x\right)^{2}}{L^{2}+i l_{P} c t}= & -\frac{1}{2}\left(k_{0}^{2} L^{2}+2 i \omega_{P} t\right)+\frac{1}{2} \frac{\left(L^{2}-i l_{P} c t\right)\left(k_{0}^{2} L^{4}+2 i x k_{0} L^{2}-x^{2}\right)}{L^{4}+l_{P}^{2} c^{2} t^{2}} \\
= & -\frac{1}{2} k_{0}^{2} L^{2}+\frac{1}{2} \frac{k_{0}^{2} L^{4} L^{2}+2 x k_{0} L^{2} l_{P} c t-x^{2} L^{2}}{L^{4}+l_{P}^{2} c^{2} t^{2}} \\
& -i \omega_{P} t+\frac{i}{2} \frac{-2 x k_{0} L^{4}+l_{P} x^{2} c t+k_{0}^{2} L^{4} l_{P} c t}{L^{4}+l_{P}^{2} c^{2} t^{2}}
\end{aligned}
$$

The real part of this may be written as

$$
\begin{aligned}
-\frac{1}{2} k_{0}^{2} L^{2}+\frac{1}{2} \frac{k_{0}^{2} L^{4} L^{2}+2 x k_{0} L^{2} l_{P} c t-x^{2} L^{2}}{L^{4}+l_{P}^{2} c^{2} t^{2}} & =\frac{1}{2} \frac{-k_{0}^{2} L^{2} l_{P}^{2} c^{2} t^{2}+2 x k_{0} L^{2} l_{P} c t-x^{2} L^{2}}{L^{4}+l_{P}^{2} c^{2} t^{2}} \\
& =-\frac{1}{2} \frac{L^{2}}{L^{4}+l_{P}^{2} c^{2} t^{2}}\left(x-k_{0} l_{P} c t\right)^{2}
\end{aligned}
$$

Recalling that the group velocity, evaluated at the central wave number, is $v_{0}=k_{0} l_{p} c$, the real part of this has the form of a Gaussian with a time-dependent mean,

$$
\exp \left(-\frac{\left(x-v_{0} t\right)^{2}}{2 \sigma^{2}(t)}\right)
$$

where

$$
\sigma(t)=\sqrt{L^{2}+\frac{l_{P}^{2}}{L^{2}} c^{2} t^{2}}
$$

For the imaginary part, consider the limit as t becomes large, $l_{P} c t \gg L^{2}$ near the center of the Gaussian, $x \approx v_{0} t$,

$$
\begin{aligned}
-i \omega_{P} t+\frac{i}{2} \frac{-2 x k_{0} L^{4}+l_{P} x^{2} c t+k_{0}^{2} L^{4} l_{P} c t}{L^{4}+l_{P}^{2} c^{2} t^{2}} & \rightarrow-i \omega_{P} t+\frac{i}{2} \frac{k_{0} L^{4}\left(-2 x+v_{0} t\right)+x^{2} l_{P} c t}{L^{4}+l_{P}^{2} c^{2} t^{2}} \\
& \approx-i\left(1-\frac{1}{2} \frac{v_{0}^{2}}{c^{2}}\right) \omega_{P} t \\
& \approx-i \omega_{P} t
\end{aligned}
$$

since the group velocity is much less than c.
Finally, the amplitude of the exponential is

$$
\begin{aligned}
\frac{L}{\sqrt{L^{2}+i l_{P} c t}} & =\frac{1}{\sqrt{1+i \frac{l_{P} c t}{L^{2}}}} \\
& =\frac{1}{\sqrt{1+\frac{l_{P}^{2} c^{2} t^{2}}{L^{4}}} e^{i \tan ^{-1} \frac{l_{P} c t}{L^{2}}}} \\
& =\frac{1}{\sqrt{1+\frac{l_{P}^{2} c^{2} t^{2}}{L^{4}}}} e^{i \tan ^{-1} \frac{l_{P} c t}{L^{2}}}
\end{aligned}
$$

so at large t,

$$
\frac{L}{\sqrt{L^{2}+i l_{P} c t}} \approx \frac{L^{2}}{l_{p} c t} e^{\frac{i \pi}{2}}
$$

Combining the results for large t,

$$
\begin{aligned}
u(x, t) & =\mathcal{R} e\left(\frac{L^{2}}{l_{p} c t} e^{\frac{i \pi}{2}} e^{-i \omega_{P} t}\right) \exp \left(-\frac{\left(x-v_{0} t\right)^{2}}{2 \sigma^{2}(t)}\right) \\
& =\frac{L^{2}}{l_{p} c t} \exp \left(-\frac{\left(x-v_{0} t\right)^{2}}{2 \sigma^{2}(t)}\right) \sin \omega_{P} t
\end{aligned}
$$

The peak of the wave moves with velocity v_{0} to the right, while the amplitude decreases linearly with time. The whole oscillates with frequency ω_{P}.

