Propagation of a Gaussian wave packet

February 15, 2016

We study the time evolution of an initially Gaussian pulse.

1 Gaussian integrals

Before starting our example, we show how to find the integral of a Gaussian curve,
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First, change the integration variable to
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Now square I,
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and change to polar coordinates, where p? = &7 + €2 and d¢1dés = pdpdp. Then
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and another change of variable to A = p? gives a simple exponential, with fooo de ™ =1,
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Therefore,
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2 Initial conditions and the mode amplitude

We begin with an initially Gaussian pulse
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with zero initial rate of change,
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We use these initial data to find A (k), then use A (k) to find u (x, ).
The solution for A (k) is found by integrating over the initial conditions

_iau

A(k) = \/% /oodx (u (z,0) o) o ($70)) o—ike

Substituting for u (z,0) and % (z,0) gives a Gaussian integral,
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For the integral of a Gaussian, see the final section. integral, we add and subtract a constant to complete
the square in the exponent,
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Then, performing the Gaussian integral,
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Therefore, the mode amplitudes follow a Gaussian as well,
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3 Dispersion relation

The time dependence of the wave packet is now given by
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where w = w (k).
Therefor, to continue, we need the form of of the dispersion relation, w (k). Consider the case of high-
frequency waves in plasma, for which we found
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Now we let wp > kc so that we may expand the square root,
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where we define the plasma wavelength, [p = i This gives our dispersion relation. The group velocity is
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vg = = wplhk

so the group velocity evaluated at the center of the packet is
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and we may write
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Notice that the approximation means that
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so the group velocity is much less than the speed of light.
Notice that this form also works for a Klein-Gordon matter wave when the momentum due to mass is
much greater than the wave momentum, mc > hk. Expanding,
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where A\¢c = E is the Compton wavelength and we = & the corresponding frequency. We continue below

with a wave packet in plasma.

4 Time evolution of the waveform

With this dispersion relation, w = wp + %kvg, the full time evolution of the wave is given by

L 7 2 .
u(z,t) = Wordee / dke~ 5 (h=ko)? pi(ka—wp+ g hvgt)

Substititing for w we have another Gaussian integral,
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Expanding the exponent,
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Two constant exponentials,
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come out of the integral, while the remaining Gaussian integral gives
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Combining these,
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where we have used [pwp = c¢. We easily check that at ¢ = 0 we recover the initial state,
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5 Finding the real part

Finally, we find the real part of the waveform. Separating the real and imaginary parts of the argument of
the exponential,
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Recalling that the group velocity, evaluated at the central wave number, is vg = kolpc, the real part of this
has the form of a Gaussian with a time-dependent mean,
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For the imaginary part, consider the limit as t becomes large, [pct > L? near the center of the Gaussian,
T = vot,
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since the group velocity is much less than c.
Finally, the amplitude of the exponential is
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Combining the results for large ¢,
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The peak of the wave moves with velocity vy to the right, while the amplitude decreases linearly with time.
The whole oscillates with frequency wp.



