Propagation of a Gaussian wave packet

February 15, 2016

We study the time evolution of an initially Gaussian pulse.

1 Gaussian integrals

Before starting our example, we show how to find the integral of a Gaussian curve,

$$I = \int_{-\infty}^{\infty} dx \, e^{-(x-x_0)^2/2\sigma^2}$$

First, change the integration variable to

$$\xi = \frac{x - x_0}{\sqrt{2}\sigma}$$

so that

$$I = \sqrt{2\sigma^2} \int_{-\infty}^{\infty} d\xi \, e^{-\xi^2}$$

Now square I,

$$I^{2} = 2\sigma^{2} \int_{-\infty}^{\infty} d\xi_{1} e^{-\xi_{1}^{2}} \int_{-\infty}^{\infty} d\xi_{2} e^{-\xi_{2}^{2}}$$
$$= 2\sigma^{2} \int_{-\infty}^{\infty} d\xi_{1} \int_{-\infty}^{\infty} d\xi_{2} e^{-(\xi_{1}^{2} + \xi_{2}^{2})}$$

and change to polar coordinates, where $\rho^2=\xi_1^2+\xi_2^2$ and $d\xi_1d\xi_2=\rho d\rho d\varphi$. Then

$$I^{2} = 2\sigma^{2} \int_{0}^{2\pi} d\varphi \int_{0}^{\infty} \rho d\rho e^{-\rho^{2}}$$
$$= 4\pi\sigma^{2} \int_{0}^{\infty} \rho d\rho e^{-\rho^{2}}$$

and another change of variable to $\lambda=\rho^2$ gives a simple exponential, with $\int_0^\infty d\lambda\,e^{-\lambda}=1$,

$$I^{2} = 2\pi\sigma^{2} \int_{0}^{\infty} d\lambda \, e^{-\lambda}$$
$$= 2\pi\sigma^{2}$$

Therefore,

$$\int_{-\infty}^{\infty} dx \, e^{-(x-x_0)^2/2\sigma^2} = \sqrt{2\pi\sigma^2}$$

2 Initial conditions and the mode amplitude

We begin with an initially Gaussian pulse

$$u(x,0) = e^{-x^2/2L^2}e^{ik_0x}$$

with zero initial rate of change,

$$\frac{\partial u}{\partial t}(x,0) = 0$$

We use these initial data to find A(k), then use A(k) to find u(x,t).

The solution for A(k) is found by integrating over the initial conditions

$$A\left(k\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \left(u\left(x,0\right) - \frac{i}{\omega\left(k\right)} \frac{\partial u}{\partial t}\left(x,0\right)\right) e^{-ikx}$$

Substituting for u(x,0) and $\frac{\partial u}{\partial t}(x,0)$ gives a Gaussian integral,

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-x^2/2L^2} e^{ik_0 x} e^{-ikx}$$

For the integral of a Gaussian, see the final section. integral, we add and subtract a constant to complete the square in the exponent,

$$-\frac{1}{2L^{2}}\left(x^{2}-2iL^{2}\left(k-k_{0}\right)x\right) = -\frac{1}{2L^{2}}\left[\left(x^{2}-2iL^{2}\left(k-k_{0}\right)x+\left(iL^{2}\left(k-k_{0}\right)\right)^{2}\right)-\left(iL^{2}\left(k-k_{0}\right)\right)^{2}\right]$$

$$= -\frac{1}{2L^{2}}\left(x-iL^{2}\left(k-k_{0}\right)\right)^{2}-\frac{1}{2}L^{2}\left(k-k_{0}\right)^{2}$$

Then, performing the Gaussian integral,

$$\int_{-\infty}^{\infty} dx e^{-x^2/2L^2} e^{-ikx} e^{ik_0 x} = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2L^2} \left(x - iL^2(k - k_0)\right)^2 - \frac{1}{2}L^2(k - k_0)^2}$$

$$= e^{-\frac{1}{2}L^2(k - k_0)^2} \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2L^2} \left(x - iL^2(k - k_0)\right)^2}$$

$$= \sqrt{2\pi L^2} e^{-\frac{1}{2}L^2(k - k_0)^2}$$

Therefore, the mode amplitudes follow a Gaussian as well,

$$A(k) = \frac{1}{\sqrt{2\pi}} \left(\sqrt{2\pi} L e^{\frac{1}{2L^2} [iL^2(k-k_0)]^2} \right)$$
$$= L e^{-\frac{L^2}{2} (k-k_0)^2}$$

3 Dispersion relation

The time dependence of the wave packet is now given by

$$u(x,t) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \left[A(k) e^{i(kx-\omega t)} + A^*(k) e^{-i(kx-\omega t)} \right]$$

$$= \frac{1}{2} \frac{L}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk e^{-\frac{L^2}{2}(k-k_0)^2} \left(e^{i(kx-\omega t)} + e^{-i(kx-\omega t)} \right)$$

$$= \frac{L}{\sqrt{2\pi}} \mathcal{R}e \int_{-\infty}^{\infty} dk e^{-\frac{L^2}{2}(k-k_0)^2} e^{i(kx-\omega t)}$$

where $\omega = \omega(k)$.

Therefor, to continue, we need the form of the dispersion relation, $\omega(k)$. Consider the case of high-frequency waves in plasma, for which we found

$$\omega = \sqrt{k^2c^2 + \omega_p^2}$$

Now we let $\omega_P \gg kc$ so that we may expand the square root,

$$\omega \approx \omega_P \left(1 + \frac{c^2}{2\omega_P^2} k^2 \right)$$
$$\approx \omega_P \left(1 + \frac{1}{2} l_P^2 k^2 \right)$$

where we define the plasma wavelength, $l_P = \frac{c}{\omega_P}$. This gives our dispersion relation. The group velocity is

$$v_g = \frac{d\omega}{dk} = \omega_P l_P^2 k$$

so the group velocity evaluated at the center of the packet is

$$v_0 \equiv \omega_P l_P^2 k_0$$

and we may write

$$\omega \approx \omega_P + \frac{1}{2}kv_g$$

Notice that the approximation means that

$$\begin{array}{rcl} \frac{v_g}{c} & = & \frac{1}{2c} l_P^2 \omega_P k \\ & = & \frac{1}{2\omega_P} kc \\ & \ll & 1 \end{array}$$

so the group velocity is much less than the speed of light.

Notice that this form also works for a Klein-Gordon matter wave when the momentum due to mass is much greater than the wave momentum, $mc \gg \hbar k$. Expanding,

$$\omega = \sqrt{\frac{m^2c^4}{\hbar^2} + k^2c^2}$$

$$= \frac{mc^2}{\hbar} \sqrt{1 + \frac{\hbar^2 k^2 c^2}{m^2 c^4}}$$

$$\approx \frac{mc^2}{\hbar} \left(1 + \frac{1}{2} \frac{\hbar^2}{m^2 c^2} k^2 \right)$$

$$= \omega_C \left(1 + \frac{1}{2} \lambda^2 k^2 \right)$$

$$= \omega_C + \frac{1}{2} k v_g$$

where $\lambda_C = \frac{\hbar}{mc}$ is the Compton wavelength and $\omega_C = \frac{c}{\lambda_C}$ the corresponding frequency. We continue below with a wave packet in plasma.

4 Time evolution of the waveform

With this dispersion relation, $\omega = \omega_P + \frac{1}{2}kv_g$, the full time evolution of the wave is given by

$$u(x,t) = \frac{L}{\sqrt{2\pi}} \mathcal{R}e \int_{-\infty}^{\infty} dk e^{-\frac{L^2}{2}(k-k_0)^2} e^{i(kx-\omega_P + \frac{1}{2}kv_g t)}$$

Substititing for ω we have another Gaussian integral,

$$u(x,t) = \frac{L}{\sqrt{2\pi}} \Re \int_{-\infty}^{\infty} dk \, e^{-\frac{L^2}{2}(k-k_0)^2} e^{i(kx-(\omega_P(1+\frac{1}{2}l_P^2k^2))t)}$$
$$= \frac{L}{\sqrt{2\pi}} \Re \int_{-\infty}^{\infty} dk \, \exp\left[-\frac{L^2}{2}(k-k_0)^2 + ikx - i\omega_P t - \frac{i}{2}\omega_P l_P^2 k^2 t\right]$$

Expanding the exponent,

$$\begin{split} -\frac{L^2}{2} \left(k - k_0\right)^2 + ikx - i\omega_P t - \frac{i}{2}\omega_P l_P^2 k^2 t &= -\frac{L^2}{2} \left((k - k_0)^2 - \frac{2}{L^2} ikx + \frac{2}{L^2} i\omega_P t + \frac{i}{2} \frac{2}{L^2} \omega_P l_P^2 k^2 t \right) \\ &= -\frac{L^2}{2} \left(k^2 - 2kk_0 + k_0^2 - \frac{2ix}{L^2} k + \frac{2}{L^2} i\omega_P t + \frac{i\omega_P l_P^2 t}{L^2} k^2 \right) \\ &= -\frac{L^2}{2} \left(\left(1 + \frac{i\omega_P l_P^2 t}{L^2} \right) k^2 - 2 \left(k_0 + \frac{ix}{L^2} \right) k \right) - \frac{L^2}{2} \left(k_0^2 + \frac{2}{L^2} i\omega_P t \right) \end{split}$$

we complete the square,

$$\left(1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}\right)k^{2} - 2\left(k_{0} + \frac{ix}{L^{2}}\right)k = \left(k\sqrt{1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}} - \frac{k_{0} + \frac{ix}{L^{2}}}{\sqrt{1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}}}\right)^{2} - \left(\frac{k_{0} + \frac{ix}{L^{2}}}{\sqrt{1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}}}\right)^{2} \\
= \left(1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}\right)\left(k - \frac{k_{0} + \frac{ix}{L^{2}}}{1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}}\right)^{2} - \frac{\left(k_{0} + \frac{ix}{L^{2}}\right)^{2}}{1 + \frac{i\omega_{P}l_{P}^{2}t}{L^{2}}}$$

Two constant exponentials,

$$\exp\left[-\frac{L^{2}}{2}\left(k_{0}^{2}+\frac{2}{L^{2}}i\omega_{P}t\right)+\frac{L^{2}}{2}\frac{\left(k_{0}+\frac{ix}{L^{2}}\right)^{2}}{1+\frac{i\omega_{P}l_{P}^{2}t}{L^{2}}}\right]=\exp\left[-\frac{1}{2}\left(k_{0}^{2}L^{2}+2i\omega_{P}t\right)+\frac{1}{2}\frac{\left(k_{0}L^{2}+ix\right)^{2}}{L^{2}+i\omega_{P}l_{P}^{2}t}\right]$$

come out of the integral, while the remaining Gaussian integral gives

$$\int_{-\infty}^{\infty} dk \, \exp\left(-\frac{1}{2} \left(L^2 + i\omega_P l_P^2 t\right) \left(k - \frac{k_0 + \frac{ix}{L^2}}{1 + \frac{i\omega_P l_P^2 t}{L^2}}\right)^2\right) = \frac{\sqrt{2\pi}}{\sqrt{L^2 + i\omega_P l_P^2 t}}$$

Combining these,

$$u(x,t) = \Re e \frac{L}{\sqrt{L^2 + il_P ct}} \exp \left[-\frac{1}{2} \left(k_0^2 L^2 + 2i\omega_P t \right) + \frac{1}{2} \frac{\left(k_0 L^2 + ix \right)^2}{L^2 + il_P ct} \right]$$

where we have used $l_P\omega_P=c$. We easily check that at t=0 we recover the initial state,

$$u(x,0) = \mathcal{R}e \exp\left[-\frac{1}{2}(k_0^2L^2) + \frac{1}{2}\frac{(k_0L^2 + ix)^2}{L^2}\right]$$
$$= \mathcal{R}e \exp\left[-\frac{1}{2}(k_0^2L^2) + \frac{1}{2}\frac{(k_0L^2 + ix)^2}{L^2}\right]$$
$$= e^{-x^2/2L^2}e^{ik_0x}$$

5 Finding the real part

Finally, we find the real part of the waveform. Separating the real and imaginary parts of the argument of the exponential,

$$-\frac{1}{2}\left(k_0^2L^2 + 2i\omega_P t\right) + \frac{1}{2}\frac{\left(k_0L^2 + ix\right)^2}{L^2 + il_P ct} = -\frac{1}{2}\left(k_0^2L^2 + 2i\omega_P t\right) + \frac{1}{2}\frac{\left(L^2 - il_P ct\right)\left(k_0^2L^4 + 2ixk_0L^2 - x^2\right)}{L^4 + l_P^2 c^2 t^2}$$

$$= -\frac{1}{2}k_0^2L^2 + \frac{1}{2}\frac{k_0^2L^4L^2 + 2xk_0L^2l_P ct - x^2L^2}{L^4 + l_P^2 c^2 t^2}$$

$$-i\omega_P t + \frac{i}{2}\frac{-2xk_0L^4 + l_P x^2 ct + k_0^2L^4l_P ct}{L^4 + l_P^2 c^2 t^2}$$

The real part of this may be written as

$$-\frac{1}{2}k_0^2L^2 + \frac{1}{2}\frac{k_0^2L^4L^2 + 2xk_0L^2l_Pct - x^2L^2}{L^4 + l_P^2c^2t^2} = \frac{1}{2}\frac{-k_0^2L^2l_P^2c^2t^2 + 2xk_0L^2l_Pct - x^2L^2}{L^4 + l_P^2c^2t^2}$$
$$= -\frac{1}{2}\frac{L^2}{L^4 + l_P^2c^2t^2}\left(x - k_0l_Pct\right)^2$$

Recalling that the group velocity, evaluated at the central wave number, is $v_0 = k_0 l_p c$, the real part of this has the form of a Gaussian with a time-dependent mean,

$$\exp\left(-\frac{\left(x-v_0t\right)^2}{2\sigma^2\left(t\right)}\right)$$

where

$$\sigma\left(t\right) = \sqrt{L^2 + \frac{l_P^2}{L^2}c^2t^2}$$

For the imaginary part, consider the limit as t becomes large, $l_P ct \gg L^2$ near the center of the Gaussian, $x \approx v_0 t$,

$$-i\omega_{P}t + \frac{i}{2} \frac{-2xk_{0}L^{4} + l_{P}x^{2}ct + k_{0}^{2}L^{4}l_{P}ct}{L^{4} + l_{P}^{2}c^{2}t^{2}} \rightarrow -i\omega_{P}t + \frac{i}{2} \frac{k_{0}L^{4} \left(-2x + v_{0}t\right) + x^{2}l_{P}ct}{L^{4} + l_{P}^{2}c^{2}t^{2}}$$

$$\approx -i\left(1 - \frac{1}{2}\frac{v_{0}^{2}}{c^{2}}\right)\omega_{P}t$$

$$\approx -i\omega_{P}t$$

since the group velocity is much less than c. Finally, the amplitude of the exponential is

$$\begin{split} \frac{L}{\sqrt{L^2 + il_P ct}} &= \frac{1}{\sqrt{1 + i\frac{l_P ct}{L^2}}} \\ &= \frac{1}{\sqrt{1 + \frac{l_P^2 c^2 t^2}{L^4}}} e^{i \tan^{-1} \frac{l_P ct}{L^2}} \\ &= \frac{1}{\sqrt{1 + \frac{l_P^2 c^2 t^2}{L^4}}} e^{i \tan^{-1} \frac{l_P ct}{L^2}} \end{split}$$

so at large t,

$$\frac{L}{\sqrt{L^2+il_Pct}} ~\approx~ \frac{L^2}{l_pct} e^{\frac{i\pi}{2}}$$

Combining the results for large t,

$$u(x,t) = \mathcal{R}e\left(\frac{L^2}{l_pct}e^{\frac{i\pi}{2}}e^{-i\omega_P t}\right)\exp\left(-\frac{(x-v_0t)^2}{2\sigma^2(t)}\right)$$
$$= \frac{L^2}{l_pct}\exp\left(-\frac{(x-v_0t)^2}{2\sigma^2(t)}\right)\sin\omega_P t$$

The peak of the wave moves with velocity v_0 to the right, while the amplitude decreases linearly with time. The whole oscillates with frequency ω_P .